The double-covering map is given by
Le double-revêtement est donné par
@article{AIHPC_2014__31_2_391_0, author = {Bevan, Jonathan}, title = {On double-covering stationary points of a constrained {Dirichlet} energy}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {391--411}, publisher = {Elsevier}, volume = {31}, number = {2}, year = {2014}, doi = {10.1016/j.anihpc.2013.04.001}, mrnumber = {3181676}, zbl = {1311.49009}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2013.04.001/} }
TY - JOUR AU - Bevan, Jonathan TI - On double-covering stationary points of a constrained Dirichlet energy JO - Annales de l'I.H.P. Analyse non linéaire PY - 2014 SP - 391 EP - 411 VL - 31 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2013.04.001/ DO - 10.1016/j.anihpc.2013.04.001 LA - en ID - AIHPC_2014__31_2_391_0 ER -
%0 Journal Article %A Bevan, Jonathan %T On double-covering stationary points of a constrained Dirichlet energy %J Annales de l'I.H.P. Analyse non linéaire %D 2014 %P 391-411 %V 31 %N 2 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2013.04.001/ %R 10.1016/j.anihpc.2013.04.001 %G en %F AIHPC_2014__31_2_391_0
Bevan, Jonathan. On double-covering stationary points of a constrained Dirichlet energy. Annales de l'I.H.P. Analyse non linéaire, Volume 31 (2014) no. 2, pp. 391-411. doi : 10.1016/j.anihpc.2013.04.001. http://www.numdam.org/articles/10.1016/j.anihpc.2013.04.001/
[1] Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ration. Mech. Anal. 63 no. 4 (1976/1977), 337-403 | MR | Zbl
,[2] Discontinuous equilibrium solutions and cavitation in nonlinear elasticity, Philos. Trans. R. Soc. Lond. Ser. A 306 no. 1496 (1982), 557-611 | MR | Zbl
,[3] Some open problems in elasticity, Geometry, Mechanics, and Dynamics, Springer, New York (2002), 3-59 | MR | Zbl
,[4] Maximal smoothness of solutions to certain Euler–Lagrange equations from nonlinear elasticity, Proc. Roy. Soc. Edinburgh Sect. A 119 no. 3–4 (1991), 241-263 | MR | Zbl
, , ,[5] Minimizers with topological singularities in two dimensional elasticity, ESAIM Control Optim. Calc. Var. 14 no. 1 (2008), 192-209 | EuDML | Numdam | MR | Zbl
, ,[6] Compensated compactness and Hardy spaces, J. Math. Pures Appl. (9) 72 no. 3 (1993), 247-286 | MR | Zbl
, , , ,[7] Direct Methods in the Calculus of Variations, Appl. Math. Sci. vol. 78, Springer, New York (2008) | MR | Zbl
,[8] Weak local minimizers in finite elasticity, J. Elasticity 93 (2008), 203-244 | MR | Zbl
, ,[9] Measure Theory and Fine Properties of Functions, Stud. Adv. Math., CRC Press, Boca Raton, FL (1992) | MR | Zbl
, ,[10] On the partial regularity of energy-minimizing, area-preserving maps, Calc. Var. Partial Differential Equations 9 no. 4 (1999), 357-372 | MR | Zbl
, ,[11] spaces of several variables, Acta Math. 129 no. 3–4 (1972), 137-193 | MR | Zbl
, ,[12] Degree Theory in Analysis and Applications, Oxford Lecture Ser. Math. Appl. vol. 2, Oxford Sci. Publ., The Clarendon Press, Oxford University Press, New York (1995) | MR | Zbl
, ,[13] Sufficient conditions for regularity of area-preserving deformations, Manuscripta Math. 138 (2012), 463-476 | MR | Zbl
,[14] Explicit energy-minimizers of incompressible elastic brittle bars under uniaxial extension, C. R. Math. Acad. Sci. Paris 348 no. 17–18 (2010), 1045-1048 | MR | Zbl
,[15] Non-uniqueness of minimizers for strictly polyconvex functionals, Arch. Ration. Mech. Anal. 193 no. 3 (2009), 659-678 | MR | Zbl
,[16] Quasiconvexity and uniqueness of stationary points on a space of measure preserving maps, J. Convex Anal. 17 no. 1 (2010), 69-79 | MR | Zbl
, ,[17] On the symmetry of energy-minimising deformations in nonlinear elasticity. I. Incompressible materials, Arch. Ration. Mech. Anal. 196 no. 2 (2010), 363-394 | MR | Zbl
, ,[18] On the symmetry of energy-minimising deformations in nonlinear elasticity. II. Compressible materials, Arch. Ration. Mech. Anal. 196 no. 2 (2010), 395-431 | MR | Zbl
, ,[19] On the global stability of two-dimensional, incompressible, elastic bars in uniaxial extension, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 466 no. 2116 (2010), 1167-1176 | MR | Zbl
, ,[20] J. Sivaloganathan, S. Spector, On the stability of incompressible elastic cylinders in uniaxial tension, preprint, 2010. | MR
[21] Quasiconformal mappings and spaces of functions with generalized first derivatives, Sib. Math. J. 17 no. 3 (1977), 515-531
, ,Cited by Sources: