Global existence and collisions for symmetric configurations of nearly parallel vortex filaments
Annales de l'I.H.P. Analyse non linéaire, Volume 29 (2012) no. 5, p. 813-832

We consider the Schrödinger system with Newton-type interactions that was derived by R. Klein, A. Majda and K. Damodaran (1995) [17] to modelize the dynamics of N nearly parallel vortex filaments in a 3-dimensional homogeneous incompressible fluid. The known large time existence results are due to C. Kenig, G. Ponce and L. Vega (2003) [16] and concern the interaction of two filaments and particular configurations of three filaments. In this article we prove large time existence results for particular configurations of four nearly parallel filaments and for a class of configurations of N nearly parallel filaments for any N2. We also show the existence of travelling wave type dynamics. Finally we describe configurations leading to collision.

@article{AIHPC_2012__29_5_813_0,
     author = {Banica, Valeria and Miot, Evelyne},
     title = {Global existence and collisions for symmetric configurations of nearly parallel vortex filaments},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     publisher = {Elsevier},
     volume = {29},
     number = {5},
     year = {2012},
     pages = {813-832},
     doi = {10.1016/j.anihpc.2012.04.005},
     zbl = {1283.35072},
     mrnumber = {2971032},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_2012__29_5_813_0}
}
Banica, Valeria; Miot, Evelyne. Global existence and collisions for symmetric configurations of nearly parallel vortex filaments. Annales de l'I.H.P. Analyse non linéaire, Volume 29 (2012) no. 5, pp. 813-832. doi : 10.1016/j.anihpc.2012.04.005. http://www.numdam.org/item/AIHPC_2012__29_5_813_0/

[1] H. Aref, Motion of three vortices, Phys. Fluids 22 (1979), 393-400 | Zbl 0394.76025

[2] F. Béthuel, H. Brezis, F. Helein, Ginzburg–Landau Vortices, Birkhäuser, Boston (1994) | MR 1269538 | Zbl 0802.35142

[3] F. Béthuel, P. Gravejat, J.-C. Saut, D. Smets, On the Korteweg–de Vries long-wave approximation of the Gross–Pitaevskii equation I, http://arxiv.org/pdf/0810.4417 | MR 2520771 | Zbl 1183.35240

[4] F. Béthuel, J.-C. Saut, Travelling waves for the Gross–Pitaevskii equation, Ann. Inst. Henri Poincaré, Phys. Théor. 70 no. 2 (1999), 147-238 | Numdam | MR 1669387 | Zbl 0933.35177

[5] J. Bona, J.-C. Saut, Dispersive blow-up. II: Schrödinger-type equations, optical and oceanic rogue waves, Chin. Ann. Math., Ser. B 31 no. 6 (2010), 793-818 | MR 2745206 | Zbl 1204.35132

[6] T. Cazenave, F. Weissler, Asymptotically self-similar global solutions of the nonlinear Schrödinger and heat equations, Math. Z. 228 no. 1 (1998), 83-120 | MR 1617975 | Zbl 0916.35109

[7] C. Gallo, Growth rate of the Schrödinger group on Zhidkov spaces, C. R. Math. Acad. Sci. Paris 342 no. 5 (2006), 319-323 | MR 2201956 | Zbl 1094.35115

[8] D. Chiron, F. Rousset, The KdV/KP-I limit of the nonlinear Schrödinger equation, SIAM Math. Anal. 42 no. 1 (2010), 64-96 | MR 2596546 | Zbl 1210.35229

[9] A. De Bouard, Instability of stationary bubbles, SIAM J. Math. Anal. 26 no. 3 (1995), 566-582 | MR 1325903 | Zbl 0823.35017

[10] L. Di Menza, C. Gallo, The black solitons of one-dimensional NLS equations, Nonlinearity 20 no. 2 (2007), 461-496 | MR 2290470 | Zbl 1128.35095

[11] P. Gérard, The Cauchy problem for the Gross–Pitaevskii equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 23 no. 5 (2006), 765-779 | MR 2259616 | Zbl 1122.35133

[12] P. Gérard, The Gross–Pitaevskii equation in the energy space, Contemp. Math. 473 (2008), 129-148 | MR 2522016 | Zbl 1166.35373

[13] P. Gravejat, Limit at infinity and nonexistence results for sonic travelling waves in the Gross–Pitaevskii equation, Differ. Integral Equ. 17 no. 11–12 (2004), 1213-1232 | MR 2100023 | Zbl 1150.35301

[14] H. Hasimoto, A soliton in a vortex filament, J. Fluid Mech. 51 (1972), 477-485 | MR 3363420 | Zbl 0237.76010

[15] E.J. Hopfinger, F.K. Browand, Vortex solitary waves in a rotating turbulent flow, Nature 295 (1981), 393-395

[16] C.E. Kenig, G. Ponce, L. Vega, On the interaction of nearly parallel vortex filaments, Commun. Math. Phys. 243 (2003), 471-483 | MR 2029363 | Zbl 1073.76014

[17] R. Klein, A. Majda, K. Damodaran, Simplified equations for the interaction of nearly parallel vortex filaments, J. Fluid Mech. 288 (1995), 201-248 | MR 1325356 | Zbl 0846.76015

[18] L.G. Kurakin, V.I. Yudovitch, The stability of stationary rotation of a regular vortex polygon, Chaos 12 no. 3 (2002), 574-595 | MR 1939453 | Zbl 1080.76520

[19] P.-L. Lions, A. Majda, Equilibrium statistical theory for nearly parallel vortex filaments, Comm. Pure Appl. Math. 53 (2000), 76-142 | MR 1715529 | Zbl 1041.76038

[20] A. Majda, A. Bertozzi, Vorticity and Incompressible Flow, Cambridge Texts Appl. Math., Cambridge University Press, Cambridge (2002) | MR 1867882 | Zbl 0983.76001

[21] M. Maris, Traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity, http://arxiv.org/abs/0903.0354 | MR 3043579 | Zbl 1315.35207

[22] E.A. Novikov, Dynamics and statistics of a system of vortices, Sov. Phys. JETP 41 (1975), 937-943

[23] G. Ponce, On the stability of nearly parallel vortex filaments, J. Dyn. Differ. Equations 18 no. 3 (2006), 551-575 | MR 2264038 | Zbl 1102.76012

[24] P.E. Zhidkov, Korteweg–de Vries and Nonlinear Schrödinger Equations: Qualitative Theory, Lecture Notes in Math. vol. 1756, Springer-Verlag (2001) | MR 1831831 | Zbl 0987.35001

[25] Z. Lin, Stability and instability of travelling solitonic bubbles, Adv. Differential Equations 7 (2002), 897-918 | MR 1895111 | Zbl 1033.35117