Eigenvalue problem for fully nonlinear second-order elliptic PDE on balls
Annales de l'I.H.P. Analyse non linéaire, Volume 29 (2012) no. 5, pp. 783-812.

We study the eigenvalue problem for positively homogeneous, of degree one, elliptic ODE on finite intervals and PDE on balls. We establish the existence and completeness results for principal and higher eigenpairs, i.e., pairs of an eigenvalue and its corresponding eigenfunction.

@article{AIHPC_2012__29_5_783_0,
     author = {Ikoma, Norihisa and Ishii, Hitoshi},
     title = {Eigenvalue problem for fully nonlinear second-order elliptic {PDE} on balls},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {783--812},
     publisher = {Elsevier},
     volume = {29},
     number = {5},
     year = {2012},
     doi = {10.1016/j.anihpc.2012.04.004},
     mrnumber = {2971031},
     zbl = {1254.35166},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2012.04.004/}
}
TY  - JOUR
AU  - Ikoma, Norihisa
AU  - Ishii, Hitoshi
TI  - Eigenvalue problem for fully nonlinear second-order elliptic PDE on balls
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2012
SP  - 783
EP  - 812
VL  - 29
IS  - 5
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2012.04.004/
DO  - 10.1016/j.anihpc.2012.04.004
LA  - en
ID  - AIHPC_2012__29_5_783_0
ER  - 
%0 Journal Article
%A Ikoma, Norihisa
%A Ishii, Hitoshi
%T Eigenvalue problem for fully nonlinear second-order elliptic PDE on balls
%J Annales de l'I.H.P. Analyse non linéaire
%D 2012
%P 783-812
%V 29
%N 5
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2012.04.004/
%R 10.1016/j.anihpc.2012.04.004
%G en
%F AIHPC_2012__29_5_783_0
Ikoma, Norihisa; Ishii, Hitoshi. Eigenvalue problem for fully nonlinear second-order elliptic PDE on balls. Annales de l'I.H.P. Analyse non linéaire, Volume 29 (2012) no. 5, pp. 783-812. doi : 10.1016/j.anihpc.2012.04.004. http://www.numdam.org/articles/10.1016/j.anihpc.2012.04.004/

[1] S.N. Armstrong, Principal eigenvalues and an anti-maximum principle for homogeneous fully nonlinear elliptic equations, J. Differential Equations 246 no. 7 (2009), 2958-2987 | MR | Zbl

[2] H. Berestycki, On some nonlinear Sturm–Liouville problems, J. Differential Equations 26 no. 3 (1977), 375-390 | MR | Zbl

[3] I. Birindelli, F. Demengel, First eigenvalue and maximum principle for fully nonlinear singular operators, Adv. Differential Equations 11 no. 1 (2006), 91-119 | MR | Zbl

[4] J. Busca, M.J. Esteban, A. Quaas, Nonlinear eigenvalues and bifurcation problems for Pucciʼs operators, Ann. Inst. H. Poincaré Anal. Non Linéaire 22 no. 2 (2005), 187-206 | EuDML | Numdam | MR | Zbl

[5] L.A. Caffarelli, Interior W 2,p estimates for solutions of the Monge–Ampere equation, Ann. of Math. (2) 131 no. 1 (1990), 135-150 | MR | Zbl

[6] L.A. Caffarelli, X. Cabré, Fully Nonlinear Elliptic Equations, American Mathematical Society, Providence (1995) | MR | Zbl

[7] L. Caffarelli, L. Nirenberg, J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. III. Functions of the eigenvalues of the Hessian, Acta Math. 155 no. 3–4 (1985), 261-301 | MR | Zbl

[8] E.N. Dancer, On the Dirichlet problem for weakly non-linear elliptic partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A 76 no. 4 (1976/77), 283-300 | MR | Zbl

[9] L. Escauriaza, W 2,n a priori estimates for solutions to fully non-linear equations, Indiana Univ. Math. J. 42 (1993), 413-423 | MR | Zbl

[10] M.J. Esteban, P. Felmer, A. Quaas, Eigenvalues for radially symmetric fully nonlinear operators, Comm. Partial Differential Equations 35 no. 9 (2010), 1716-1737 | MR | Zbl

[11] P. Fok, Some maximum principles and continuity estimates for fully nonlinear elliptic equations of second order, PhD thesis, UCSB, 1996, 82 pp. | MR

[12] S. Fučik, Boundary value problems with jumping nonlinearities, Časopis Pěst. Mat. 101 no. 1 (1976), 69-87 | EuDML | MR | Zbl

[13] H. Ishii, Y. Yoshimura, Demi-eigenvalues for uniformly elliptic Isaacs operators, preprint.

[14] S. Koike, A. ŚwiȩCh, Weak Harnack inequality for fully nonlinear uniformly elliptic PDE with unbounded ingredients, J. Math. Soc. Japan 61 no. 3 (2009), 723-755 | MR | Zbl

[15] P.-L. Lions, Bifurcation and optimal stochastic control, Nonlinear Anal. 7 no. 2 (1983), 177-207 | MR

[16] N. Nadirashvili, S. Vlăduţ, On axially symmetric solutions of fully nonlinear elliptic equations, Math. Z. 270 (2012), 331-336 | MR | Zbl

[17] S. Patrizi, Principal eigenvalues for Isaacs operators with Neumann boundary conditions, NoDEA Nonlinear Differential Equations Appl. 16 no. 1 (2009), 79-107 | MR | Zbl

[18] A. Quaas, B. Sirakov, Principal eigenvalues and the Dirichlet problem for fully nonlinear elliptic operators, Adv. Math. 218 no. 1 (2008), 105-135 | MR | Zbl

[19] B. Sirakov, Solvability of uniformly elliptic fully nonlinear PDE, Arch. Ration. Mech. Anal. 195 no. 2 (2010), 579-607 | MR | Zbl

[20] N.S. Trudinger, On the Dirichlet problem for Hessian equations, Acta Math. 175 no. 2 (1995), 151-164 | MR | Zbl

Cited by Sources: