We prove the strong minimum principle for non-negative quasisuperminimizers of the variable exponent Dirichlet energy integral under the assumption that the exponent has modulus of continuity slightly more general than Lipschitz. The proof is based on a new version of the weak Harnack estimate.
Nous prouvons le fort principe du minimum pour des quasisuperminimizeurs non-négatifs de problème de Dirichlet de lʼexposant variable en supposant que lʼexposant a le module de continuité un peu plus général que Lipschitz. La démonstration est fondée sur une nouvelle version de la faible inégalité de Harnack.
Keywords: Non-standard growth, Variable exponent, Dirichlet energy, Maximum principle, Minimum principle, Weak Harnack inequality, De Giorgi method
@article{AIHPC_2011__28_5_731_0,
author = {Harjulehto, P. and H\"ast\"o, P. and Latvala, V. and Toivanen, O.},
title = {The strong minimum principle for quasisuperminimizers of non-standard growth},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {731--742},
year = {2011},
publisher = {Elsevier},
volume = {28},
number = {5},
doi = {10.1016/j.anihpc.2011.06.001},
mrnumber = {2838399},
zbl = {1251.49028},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2011.06.001/}
}
TY - JOUR AU - Harjulehto, P. AU - Hästö, P. AU - Latvala, V. AU - Toivanen, O. TI - The strong minimum principle for quasisuperminimizers of non-standard growth JO - Annales de l'I.H.P. Analyse non linéaire PY - 2011 SP - 731 EP - 742 VL - 28 IS - 5 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2011.06.001/ DO - 10.1016/j.anihpc.2011.06.001 LA - en ID - AIHPC_2011__28_5_731_0 ER -
%0 Journal Article %A Harjulehto, P. %A Hästö, P. %A Latvala, V. %A Toivanen, O. %T The strong minimum principle for quasisuperminimizers of non-standard growth %J Annales de l'I.H.P. Analyse non linéaire %D 2011 %P 731-742 %V 28 %N 5 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2011.06.001/ %R 10.1016/j.anihpc.2011.06.001 %G en %F AIHPC_2011__28_5_731_0
Harjulehto, P.; Hästö, P.; Latvala, V.; Toivanen, O. The strong minimum principle for quasisuperminimizers of non-standard growth. Annales de l'I.H.P. Analyse non linéaire, Tome 28 (2011) no. 5, pp. 731-742. doi: 10.1016/j.anihpc.2011.06.001
[1] , , Regularity results for a class of functionals with nonstandard growth, Arch. Ration. Mech. Anal. 156 no. 2 (2001), 121-140 | MR | Zbl
[2] , , Mappings of finite distortion and -harmonic functions, Int. Math. Res. Not. IMRN (2010), 1940-1965 | MR | Zbl
[3] , The Harnack inequality and the Hölder property of solutions of nonlinear elliptic equations with a nonstandard growth condition, Differ. Equ. 33 no. 12 (1997), 1653-1663 | MR | Zbl
[4] , , Harnack inequalities for quasiminima of variational integrals, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 295-308 | MR | EuDML | Zbl | Numdam
[5] , Maximal function on generalized Lebesgue spaces , Math. Inequal. Appl. 7 no. 2 (2004), 245-253 | MR | Zbl
[6] , , , , Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Math. vol. 2017, Springer-Verlag, Berlin (2011) | MR | Zbl
[7] , Global regularity for variable exponent elliptic equations in divergence form, J. Differential Equations 235 no. 2 (2007), 397-417 | Zbl
[8] , , The quasi-minimizer of integral functionals with growth conditions, Nonlinear Anal. 39 (2001), 807-816 | MR | Zbl
[9] , , , A strong maximum principle for -Laplace equations, Chinese J. Contemp. Math. 24 (2003), 277-282 | MR
[10] , , , Maximum principles for anisotropic elliptic inequalities, Nonlinear Anal. 70 no. 8 (2009), 2917-2929 | MR | Zbl
[11] , , , Large solutions for the Laplacian with a power nonlinearity given by a variable exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 no. 3 (2009), 889-902 | MR | EuDML | Zbl | Numdam
[12] , Direct Methods in the Calculus of Variations, World Scientific, Singapore (2003) | MR | Zbl
[13] , , , , Overview of differential equations with non-standard growth, Nonlinear Anal. 72 no. 12 (2010), 4551-4574 | MR | Zbl
[14] , , , Unbounded supersolutions of nonlinear equations with nonstandard growth, Bound. Value Probl. (2007) | MR | EuDML | Zbl
[15] , , , , , Harnackʼs inequality for quasiminimizers with non-standard growth conditions, J. Math. Anal. Appl. 344 no. 1 (2008), 504-520 | MR | Zbl
[16] , On generalized Takagi functions, Acta Math. Hungar. 49 no. 3–4 (1987), 315-324 | MR | Zbl
[17] , , On spaces and , Czechoslovak Math. J. 41 no. 116 (1991), 592-618 | MR | EuDML | Zbl
[18] , , A property of the solutions of parabolic equations with measurable coefficients, Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), 161-175 | MR | Zbl
[19] , A theorem on fine connectedness, Potential Anal. 12 no. 1 (2000), 221-232 | MR | Zbl
[20] , , , Variable exponent functionals in image restoration, Appl. Math. Comput. 216 (2010), 870-882 | MR | Zbl
[21] , , , Wolff potential estimates for elliptic equations with nonstandard growth and applications, Forum Math. 22 no. 6 (2010), 1061-1087 | MR | Zbl
[22] , , , -harmonic function with unbounded exponent in a subdomain, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 no. 6 (2009), 2581-2595 | MR | EuDML | Zbl | Numdam
[23] , Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math. vol. 1748, Springer-Verlag, Berlin (2000) | MR | Zbl
[24] , , Entropy solutions for the -Laplace equation, Trans. Amer. Math. Soc. 361 no. 12 (2009), 6387-6405 | MR | Zbl
[25] , , Existence and uniqueness of renormalized solutions to nonlinear elliptic equations with variable exponents and -data, Nonlinear Anal. 72 no. 6 (2010), 2990-3008 | MR | Zbl
[26] , , Renormalized and entropy solutions for nonlinear parabolic equations with variable exponents and data, J. Differential Equations 248 no. 6 (2010), 1376-1400 | MR | Zbl
[27] , , , Existence of solutions and boundary asymptotic behavior of -Laplacian equation multi-point boundary value problems, Nonlinear Anal. 72 no. 6 (2010), 2950-2973 | MR | Zbl
Cité par Sources :






