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Abstract

We prove the strong minimum principle for non-negative quasisuperminimizers of the variable exponent Dirichlet energy integral
under the assumption that the exponent has modulus of continuity slightly more general than Lipschitz. The proof is based on a
new version of the weak Harnack estimate.
© 2011 Elsevier Masson SAS. All rights reserved.

Résumé

Nous prouvons le fort principe du minimum pour des quasisuperminimizeurs non-négatifs de problème de Dirichlet de l’exposant
variable en supposant que l’exposant a le module de continuité un peu plus général que Lipschitz. La démonstration est fondée sur
une nouvelle version de la faible inégalité de Harnack.
© 2011 Elsevier Masson SAS. All rights reserved.
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1. Introduction

It is well known that solutions of linear and non-linear PDE as well as (quasi)minimizers of variational integrals
often satisfy the strong maximum principle: a bounded non-constant continuous solution u cannot attain its maximum
or minimum in a domain. For the minimum and a non-negative solution u the claim follows easily from Harnack’s
inequality, which states that

sup
B

u � C inf
B

u
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for all small balls B � Ω . In fact, Harnack’s inequality implies that the set {u = 0} is open and the continuity of u

guarantees that the set {u > 0} is open. If we are only interested in the minimum principle, it is enough to con-
sider supersolutions or quasisuperminimizers and similar reasoning works since non-negative lower semicontinuous
representatives satisfy the weak Harnack inequality(

−
∫

2B

uh dx

)1/h

� C inf
B

u (1.1)

for some exponent h > 0 and for all small balls B � Ω . This holds in particular for quasiminimizers and quasisuper-
minimizers of the p-Dirichlet energy integral∫

Ω

|∇u|p dx

for p > 1; see [4].
In this note we consider quasisuperminimizers of the p(·)-Dirichlet energy integral∫

Ω

|∇u|p(x) dx.

Such energies arise for instance in fluid dynamics [23] and image processing [20]. This case is much more complicated
and the strong minimum principle is an open question in general. The problems arise from two facts: (weak) Harnack
estimates include an additional term; and the homogeneity is missing, that is, the set of K-quasisuperminimizers is
not closed under multiplication with a positive number, cf. Remark 3.3. Recall that in [15], P. Harjulehto, T. Kuusi,
T. Lukkari, N. Marola, and M. Parviainen proved by De Giorgi’s method that non-negative quasiminimizers satisfy
Harnack’s inequality

sup
QR

u � C
(‖u‖Lε

)(
inf
QR

u + R
)

whenever the cube QR with the side-length R is small enough and p is log-Hölder continuous with 1 < p− �
p+ < ∞. Using Moser’s iteration this inequality was obtained earlier by Yu. Alkhutov [3] (for ε = ∞) and then by
P. Harjulehto, J. Kinnunen and T. Lukkari [14] (for ε > 0 arbitrarily small).

It is known that the constant C cannot be independent of u, see [14, Example 3.10]. It is not known whether the
additional R on the right hand side is needed or not; however, all known regularity proofs result in the additional
term R. The same additional term R appears also in the proofs of the weak Harnack estimate analogous to (1.1).
Notice that the strong minimum principle can be proved without the weak Harnack estimate by potential theoretic
tools, see e.g. [19, Theorem 4.1], but this approach requires the homogeneity.

As far as we know, the only proof of the strong maximum principle in the variable exponent case is by a direct
method, i.e. by choosing suitable test functions. This result is due to X.-L. Fan, Y.Z. Zhao and Q.-H. Zhang [9] under
the assumption that p ∈ C1(Ω) with 1 < p− � p+ < ∞. Recently, R. Fortini, D. Mugnai and P. Pucci [10] were able
to prove the weak maximum principle for subsolutions of more general equations under the assumption that p is only
log-Hölder continuous.

In this paper we prove the strong maximum and minimum principle in the variable exponent case using Harnack’s
inequality. Our results apply to the larger class of quasisubminimizers, rather than subminimizers as in the previous
papers. Our proof relies on new versions of the weak Harnack estimate (Theorem 4.6) with more precise control of
the error term based on the modulus of continuity of the exponent p. In Section 5, we consider Dini-type continuity
conditions on p, including for instance the case

∣∣p(x) − p(y)
∣∣ � c|x − y| log

(
e + 1

|x − y|
)

which is slightly weaker than the Lipschitz continuity. In this case we obtain the error term exp(−1/(R logR)) which
is so small that the strong minimum principle can be achieved by an iterative process, see Theorem 5.3. For quasimin-
imizers we obtain similarly the strong maximum principle.
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Clearly our assumption on the exponent is stronger than the log-Hölder continuity. However, we note that there
exist functions with this continuity modulus which are nowhere differentiable; an example is the Tagaki function, cf.
[16, Theorem 4]. Hence our condition is substantially weaker than the assumption p ∈ C1(Ω) used in [9]. Notice also
that our main result can be formulated generally, independent of variable exponent spaces: a certain weak Harnack
estimate with an additive error implies the strong minimum principle whenever the additional term is sufficiently
small.

2. Preliminaries

The results of this section can be found in [6]; most were first proved in [17].
By Q(x, r) we denote an open cube centered at x with sides parallel to the coordinate axes of length 2r . By f ≈ g

we mean that there exists a constant c > 0 such that 1
c
f � g � cf . By Ω ⊂ R

n we always denote a bounded open set.
A bounded measurable function p :Ω → [1,∞) is called a variable exponent, and we denote for A ⊂ Ω

p+
A := sup

x∈A

p(x), p−
A := inf

x∈A
p(x), p+ := sup

x∈Ω

p(x), p− := inf
x∈Ω

p(x).

We define a modular by setting

�p(·)(f ) :=
∫
Ω

∣∣f (x)
∣∣p(x)

dx.

The variable exponent Lebesgue space Lp(·)(Ω) consists of all measurable functions defined on Ω for which the
modular is finite. The Luxemburg norm on this space is defined as

‖f ‖p(·) := inf

{
λ > 0: �p(·)

(
f

λ

)
� 1

}
.

Equipped with this norm Lp(·)(Ω) is a Banach space. The variable exponent Lebesgue space is a special case of a
Musielak–Orlicz space. For a constant function p it coincides with the standard Lebesgue space.

The variable exponent Sobolev space W 1,p(·)(Ω) consists of functions u ∈ Lp(·)(Ω) whose distributional gradient
∇u belongs to Lp(·)(Ω). The variable exponent Sobolev space W 1,p(·)(Ω) is a Banach space with the norm

‖u‖1,p(·) := ‖u‖p(·) + ‖∇u‖p(·).

If E is a measurable set with a finite measure, and p � q are variable exponents, then Lp(·)(E) embeds continuously
into Lq(·)(E). In particular this implies that every function u ∈ W 1,p(·)(Ω) also belongs to W 1,p−

Ω (Ω). The variable
exponent Hölder inequality takes the form∫

Ω

fg dx � 2‖f ‖p(·)‖g‖p′(·),

1/p(x) + 1/p′(x) ≡ 1.
The variable exponent p is said to be log-Hölder continuous if there is a constant Clog such that

∣∣p(x) − p(y)
∣∣ � Clog

log(e + 1/|x − y|)
for all x, y ∈ Ω . The importance of this condition was realized by Diening [5]. A crucial fact is (see [6, p. 101]) that
there is a constant C > 0 such that

|B|p−
B ≈ |B|p+

B (2.1)

if and only if p is log-Hölder continuous (note that we consider only the case of bounded domains). Under the
log-Hölder condition smooth functions are dense in variable exponent Sobolev spaces and there is no confusion in
defining the Sobolev space with zero boundary values, W

1,p(·)
0 (Ω), as the completion of C∞

0 (Ω) with respect to the
norm ‖u‖1,p(·).

We assume throughout this paper that p is log-Hölder continuous and 1 < p− � p+ < ∞.
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3. Regularity of quasisuperminimizers for log-Hölder continuous exponent

We recall first some (essentially known) auxiliary results for quasisuperminimizers. In particular we need the
Lebesgue point property for quasisuperminimizers. For more results on PDE with non-standard growth we refer to
the papers [1,2,7,11,21,22,24–27] or the survey [13].

Definition 3.1. Let Ω ⊂ R
n be an open set and K � 1. A function u ∈ W

1,p(·)
loc (Ω) is a K-quasiminimizer in Ω , if∫

{v �=0}
|∇u|p(x) dx � K

∫
{v �=0}

∣∣∇(u + v)
∣∣p(x)

dx

for all functions v ∈ W 1,p(·)(Ω) with compact support in Ω . If the inequality holds only for all non-negative or
non-positive v, then u is called a K-quasisuperminimizer or K-quasisubminimizer in Ω , respectively.

The following lemma is needed in Section 5.

Lemma 3.2. If u is a K-quasisuperminimizer in Ω and α ∈ R, then min(α,u) is a K-quasisuperminimizer in Ω .

Proof. Let v ∈ W 1,p(·)(Ω) be a non-negative function with a compact support. We denote Ω ′ := {x ∈ Ω: v(x) �= 0},
U := {

x ∈ Ω ′: u(x) > α
}
, V := {

x ∈ Ω ′: min
(
u(x),α

) + v(x) > u(x)
}
,

and ϕ := (min(u,α) + v − u)+. Then V = {x ∈ Ω ′: ϕ(x) > 0} and Definition 3.1 implies that∫
V

|∇u|p(x) dx � K

∫
V

∣∣∇(u + ϕ)
∣∣p(x)

dx = K

∫
V

∣∣∇ min(u,α) + ∇v
∣∣p(x)

dx.

Since U ∪ V = Ω ′, we conclude that∫
Ω ′

∣∣∇ min(u,α)
∣∣p(x)

dx =
∫

V \U
|∇u|p(x) dx �

∫
V

|∇u|p(x) dx

� K

∫
Ω ′

∣∣∇(
min(u,α) + v

)∣∣p(x)
dx. �

Remark 3.3. If u is a K-quasisuperminimizer and α > 0, then αu is a quasisuperminimizer with constant
max(αp+−p−

, αp−−p+
)K depending on α. We skip the easy proof of this property since we do not need it in this

paper. The problem here is that the quasisuperminimizing constant of αu depends on α.

We recall from [15] the basic weak Harnack estimates for quasisuperminimizers. In [15], the authors study quasi-
minimizers, but many of their auxiliary results hold in this more general setting.

Fix a point x0 ∈ Ω and denote Qr := Q(x0, r). Throughout the rest of the paper we work in a cube Q := Q2R � Ω .
We assume that R � 1

2 , 1 < q < n
n−1 , and choose Q so small that∫

Q

|u|p(x) dx � 1 and
∫
Q

|∇u|p(x) dx � 1. (3.4)

Further, we write

ε = 1 − qp−/
(
p−)∗ and δ = p−/p+ + ε − 1. (3.5)

Note that p+ may be viewed as p+
Q since we are only concerned with Q, similarly for p−.

The following supremum estimate was proved in [15, Theorem 4.14]. Notice in the original proof that only the
quasisubminimizing property is needed.



P. Harjulehto et al. / Ann. I. H. Poincaré – AN 28 (2011) 731–742 735
Theorem 3.6. Let u be a K-quasisubminimizer in Ω and let s > p+ − p−. Then for every l ∈ (0, qp−) and � < R,

ess sup
Q�

u � k0 + C

(
1

(R − �)n

∫
QR

(u − k0)
l+ dx

)δ/((ε−δ)qp−+lδ)

.

The constant C depends on l, n, p(·), q , K and the Lq ′s(Q)-norm of u.

Theorem 3.6 leads to the following homogenized weak Harnack inequality, see [15, Theorem 5.7].

Theorem 3.7. Let u be a non-negative quasisuperminimizer in Ω . Then there exist an exponent h > 0 and a con-
stant C, both depending on n, p(·), q , K , and the Lq ′s(Q)-norm of u, such that(

−
∫
QR

uh dx

)1/h

� C
(

ess inf
QR/2

u + R
)

for every cube QR for which Q10R ⊂ Ω , R � 1
2 and (3.4) holds.

We close this preliminary section by pointing out that locally bounded quasisuperminimizers have Lebesgue points
everywhere.

Lemma 3.8. Let u be a quasisuperminimizer in Ω . Then

u∗(x) := lim
r→0

ess inf
B(x,r)

u

defines a lower semicontinuous representative of u. Moreover, if u is essentially locally upper bounded, then u∗ has
Lebesgue points everywhere in Ω .

Proof. The proof follows by imitating the standard argument. Notice first that quasisuperminimizers are essentially
bounded from below by Theorem 3.6. Hence we may follow the proof of [14, Theorem 4.1] and conclude that u∗ is a
lower semicontinuous representative of u.

Assume that u is essentially bounded from above. Then by the proof of [14, Theorem 4.1],

u∗(x) = lim
r→0

−
∫

!B(x,r)

u dy,

and the estimate

−
∫

B(x,r)

∣∣u∗(y) − u∗(x)
∣∣dy � −

∫
B(x,r)

∣∣u∗(y) − mr

∣∣dy + ∣∣mr − u∗(x)
∣∣

implies that

lim
r→0

−
∫

B(x,r)

∣∣u∗(y) − u∗(x)
∣∣dy = 0.

Here we denoted mr := ess infB(x,r) u. �
4. Regularity of quasisuperminimizers

This section includes a new version of the weak Harnack estimate with better and more precise control of the
error term based on the modulus of continuity of the exponent p. If p is only log-Hölder continuous, then we regain
previous results of [15].

In addition to the assumptions 1 < p− � p+ < ∞, we assume throughout this section that∣∣p(x) − p(y)
∣∣ � ω

(|x − y|) � c

log(1 + 1 )
(4.1)
t
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for all x, y ∈ Ω and some c > 0, where ω : [0,∞) → [0,∞) is a modulus of continuity, i.e. a continuous increasing
function with ω(0) = 0. Thus, in particular, p is log-Hölder continuous.

We start by homogenizing the inequality of Theorem 3.6; compared to the results in [15], the additional error
term R is replaced by e−1/ω(R).

Lemma 4.2. Let ω be the modulus of continuity of p and let u be a K-quasisubminimizer in Ω . Then for every
s > p+ − p− and for every l ∈ (0, qp−) and � < R, we have

ess sup
Q�

u � k0 + e−1/ω(R) +
(

C

(R − �)n

∫
QR

(u − k0)
l+ dx

)1/l

.

The constant C depends on l, n, p(·), q , K and the Lq ′s(Q)-norm of u.

Proof. Let

α := δ

(ε − δ)qp− + lδ
,

where δ, ε > 0 are defined in (3.5). We obtain by Theorem 3.6 and Young’s inequality that

ess sup
Q�

u � k0 + C

(
θ

θ(R − �)n

∫
QR

(u − k0)
l+ dx

)α

� k0 + C

(
θ

(R − �)n

∫
QR

(u − k0)
l+ dx

) 1
l + θ− α

1−αl .

By the definition of α, δ and ε, we find that

1

1 − αl
>

lδ

(ε − δ)qp− = p+lδ

(p+ − p−)qp− � C

p+ − p− � C

ω(R)
.

The claim follows by choosing θ = e
1−αl
αω(R) , since then θ− α

1−αl = e−1/ω(R) and the previous estimate 1
1−αl

� C
ω(R)

implies that θ � C. �
Next we prove the weak Harnack inequality for non-negative quasisuperminimizers. We proceed as in DiBenedetto

and Trudinger [4]; cf. [15] for the variable exponent modification.
In what follows, we denote

D(k, r) := {
x ∈ Qr : u(x) < k

}
.

The proof of the next lemma is similar to that of [15, Lemma 5.1], and is hence omitted.

Lemma 4.3. Let ω be the modulus of continuity of p and let u be a non-negative K-quasisuperminimizer in Ω . Then
there exists a constant γ0 ∈ (0,1), depending on n, p(·), q , K , and the Lq ′s(Q)-norm of u, such that if∣∣D(θ,R)

∣∣ � γ0|QR|
for some θ > 0, then

ess inf
QR/2

u + e−1/ω(R) � θ

2
.

Next we generalize [15, Lemma 5.2].

Lemma 4.4. Let ω be the modulus of continuity of p and let u be a non-negative K-quasisuperminimizer in Ω . Then
for every γ ∈ (0,1) there exists a constant μ > 0, depending on γ , n, p(·), q , K , and the Lq ′s(Q)-norm of u, such
that if∣∣D(θ,R)

∣∣ � γ |QR|
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for some θ > 0, then

ess inf
QR/2

u + e−1/ω(R) � μθ.

Proof. Let i0 be a positive integer to be fixed later. Let us first assume that θ > 2i0e−1/ω(R). For e−1/ω(R) < h < k < θ

we set

v :=
{0, if u � k,

k − u, if h < u < k,

k − h, if u � h.

Then v ∈ W
1,p(·)
loc (Ω) and ∇v = −∇uχ{h<u<k} a.e. in Ω . Clearly, v = 0 in QR \ D(k,R), and since |D(k,R)| �

|D(θ,R)| � γ |QR| we obtain |QR \ D(k,R)| � (1 − γ )|QR|. Hence we may apply Sobolev’s inequality( ∫
QR

vn′
dx

)1/n′

� C

∫


|∇v|dx,

where  := D(k,R) \ D(h,R) and C depends on γ and n. We have

(k − h)
∣∣D(h,R)

∣∣ =
∫

D(h,R)

v dx �
∣∣D(h,R)

∣∣1/n
( ∫

QR

vn′
dx

)1/n′

,

from which it follows by Hölder’s inequality and the assumption ‖∇u‖Lp(·)(QR) � 1 that

(k − h)
∣∣D(h,R)

∣∣1/n′
� C

∫


|∇v|dx

� C‖1‖
Lp′(·)()

‖∇v‖Lp(·)()

� C||1−1/p−
( ∫

D(k,R)

|∇v|p(x) dx

)1/p+

.

The Caccioppoli estimate [15, Lemma 3.4] implies that∫
D(k,R)

|∇v|p(x) dx �
∫

D(k,R)

|∇u|p(x) dx � C

∫
D(k,2R)

(
(k − u)+

R

)p(x)

dx

� CR−p+
∫

D(k,2R)

kp(x) dx � CR−p+
∫

D(k,2R)

(
k

e−1/ω(R)
· e−1/ω(R)

)p(x)

dx

� CR−p+
(

k

e−1/ω(R)

)p+ ∫
D(k,2R)

e−p(x)/ω(R) dx

� CR−p+
(

k

e−1/ω(R)

)p+

e−p−/ω(R)Rn � Ckp+
Rn−p+

.

Here the last inequality follows from the assumption (4.1).
Combining the above inequalities we deduce that

(
k − h

k

)(p−)′ ∣∣D(h,R)
∣∣ (p−)′

n′ � CR
p−
p+

n−p+
p−−1

∣∣D(k,R) \ D(h,R)
∣∣

� CR
n−p−
p−−1

∣∣D(k,R) \ D(h,R)
∣∣.
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Here the log-Hölder continuity is used in the last step. The end of the proof is analogical to the proof of
[15, Lemma 5.2]; the only difference is that we now consider the cases θ > 2i0e−1/ω(R) and θ � 2i0e−1/ω(R). (The
variable i0 is fixed in the course of this part of the proof.) �

For the next step we recall the covering theorem due to Krylov and Safonov, see [18]. For the proof, we refer to,
e.g., the monograph by Giusti [12].

Lemma 4.5. Let E ⊂ QR ⊂ R
n be a measurable set and let 0 < δ < 1. Moreover, let

Eδ :=
⋃

x∈Q(y,R),0<�<R

{
Q(x,3�) ∩ Q(y,R):

∣∣Q(x,3�) ∩ E
∣∣ � δ

∣∣Q(y,�)
∣∣}.

Then either |E| � δ|Q(y,R)|, in which case Eδ = Q(y,R), or

|Eδ| � 1

δ
|E|.

Theorem 4.6. Let ω be the modulus of continuity of p and let u be a non-negative K-quasisuperminimizer in Ω . Then
there exist an exponent h > 0 and a constant C, both depending on n, p(·), q , K , and the Lq ′s(Q)-norm of u, such
that (

−
∫
QR

uh dx

)1/h

� C
(

ess inf
QR/2

u + e−1/ω(R)
)

for every cube QR for which Q10R ⊂ Ω , R � 1
2 and (3.4) holds.

Proof. The proof follows closely the reasoning in [15, Theorem 5.7]. However, since the proof of [15, Theorem 5.7]
contains a minor mistake, we give the main steps of the proof here.

In order to apply the formula

∫
QR

(
u + e−1/ω(R)

)h
dx = h

∞∫
0

th−1
∣∣A0

t

∣∣dt

we estimate the measure of the set

A0
t := {

x ∈ QR: u(x) + e−1/ω(R) > t
}
.

As in [15], we denote

Ai
t := {

x ∈ QR: u(x) + e−1/ω(R) > tμi
}
, i = 1,2, . . . ,

and conclude that∣∣{x ∈ Q(z,6�): u + e−1/ω(R) < tμi
}∣∣ �

(
1 − δ

6n

)
|Q6�| = γ |Q6�|.

Hence Lemma 4.4 yields

ess inf
Q(z,3�)

u + 2e−1/ω(R) � tμi+1,

which implies that

ess inf
Q(z,3�)

u + e−1/ω(R) � t

2
μi+1.

In other words,(
Ai

t

)
δ
⊂ Ai+1

t/2 .

(Here [15] claims that (Ai
t )δ ⊂ Ai+1

t .)
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Therefore Lemma 4.5 implies that

ess inf
QR/2

u + e−1/ω(R) � t2−jμj+1

for the smallest integer j satisfying

j � 1

log δ
log

|A0
t |

|QR| ,
and we obtain the estimate∣∣A0

t

∣∣ � C|QR|
(

ess inf
QR/2

u + e−1/ω(R)
)a

t−a,

where a := log δ
logμ−log 2 > 0. For 0 < h < a, we conclude the claim as in [15]. �

5. Strong minimum principle

As the main result of this paper we show that the weak Harnack estimate of Theorem 4.6 yields the strong minimum
principle under the assumption that p has modulus of continuity Φ satisfying the Dini-type condition

1∫
0

Φ−1(t)

t2
dt = ∞. (5.1)

We assume here that Φ : [0,∞) → [0,∞) is a continuous strictly increasing function with Φ(0) = 0. The condition
(5.1) holds e.g. if

Φ(t) = |t | log

(
e + 1

|t |
)

. (5.2)

Clearly the assumption (5.1) is stronger than the log-Hölder continuity, but weaker than Lipschitz continuity.
Recall that u∗ stands for the lower semicontinuous representative of the quasisuperminimizer u, see Lemma 3.8.

Theorem 5.3 (The strong minimum principle). Let Ω ⊂ R
n be a bounded domain and let p :Ω → [1,∞) with 1 <

p− � p+ < ∞ have modulus of continuity satisfying (5.1). Let u be a non-negative quasisuperminimizer in Ω . Then
either u∗ > 0 in Ω or u∗ ≡ 0 in Ω .

Proof. Throughout the proof, we use the notation u for u∗. In particular, u is lower semicontinuous. Suppose that
u(x0) = 0 for some x0 ∈ Ω and choose a cube Q centered at x0 such that 10Q ⊂ Ω and the inequalities∫

Q

|u|p(x) dx � 1 and
∫
Q

|∇u|p(x) dx � 1

hold. It is enough to show that u = 0 in a neighborhood of x0. In fact, then {x ∈ Ω: u(x) = 0} and {x ∈ Ω: u(x) > 0}
are both open and so one of them must be empty, as claimed. For the proof, we consider a chain of cubes joining x0
and x �= x0 and iterate the weak Harnack estimate of Theorem 4.6.

Fix for the moment an integer k � 3. Let (ri)
k
i=0 be a non-decreasing sequence. We choose points xi , i = 1, . . . , k,

in Q such that |xi−1 − xi | = ri−1. For each i = 0, . . . , k, let Qi be a cube with the center xi and the side-length 2ri .
Then

|Qi ∩ Qi−1| � c|Qi−1| (5.4)

for all i = 1, . . . , k. We may assume that numbers ri are so small that Qi ⊂ Q for every i = 0, . . . , k.
By Theorem 4.6,(

−
∫

uh dx

)1/h

� C
(

inf
Qi

u + e
− 1

Φ(ri )

)

Qi
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for all i = 0, . . . , k. Since Lemma 3.2 allows us to consider the truncated function min(u,1), we may assume that the
constant C0 (i.e. the Lq ′s(Qi)-norm of u) is independent on the cube Qi . By inequality (5.4),

inf
Qi

u � inf
Qi∩Qi−1

u �
(

−
∫

Qi∩Qi−1

uh dx

)1/h

� C

(
−
∫

Qi−1

uh dx

)1/h

.

Hence(
−
∫
Qi

uh dx

)1/h

� C0

[(
−
∫

Qi−1

uh dx

)1/h

+ e
− 1

Φ(ri )

]
.

Iterating this inequality and using the estimate(
−
∫
Q0

uh dx

)1/h

� C0e
− 1

Φ(r0)

(which holds since u(x0) = 0), we find that(
−
∫
Qj

uh dx

)1/h

�
k∑

i=0

Ck−i+1
0 e

− 1
Φ(ri ) (5.5)

for j = 0, . . . , k.
The right hand side of the previous inequality can be estimated by

k∫
−1

Ck−t+1
0 e

− 1
Φ(r(t)) dt,

where the function r is chosen so that r(t) � ri when t ∈ [i − 1, i]. Let us choose

r(t) := Φ−1
(

1

a(k − t + 1) + l(k)

)
and ri := r(i);

here a > logC0 is fixed and l(k) will be specified later. Since r is increasing, it is easy to verify that ri � ri+1. With
this choice of r ,

k∫
−1

Ck−t+1
0 e

− 1
Φ(r(t)) dt =

k∫
−1

e−β(k−t+1)−l(k) dt � 1

β
e−l(k),

where β := a − logC0 > 0. Hence we conclude from (5.5) that(
−
∫
Qj

uh dx

)1/h

� Ce−l(k) (5.6)

for j = 0, . . . , k.
Let us now show that we can choose an unbounded function l(k) such that the extent |x − x0| of the chain (Qi)

k
i=1

does not tend to 0 when k grows to infinity. By changing variables we see that this length is at least

k∑
i=2

ri �
k∫

1

r(t) dt =
k∫

1

Φ−1
(

1

a(k − t + 1) + l(k)

)
dt = 1

a

1/(a+l(k))∫
1/(ak+l(k))

Φ−1(z)

z2
dz.

Since
1/(a+l(k))∫

Φ−1(z)

z2
dz �

1/(a+l(k))∫
Φ−1(z)

z2
dz
1/(ak+l(k)) 1/(ak)
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whenever l(k) < a(k − 1), we may choose for every k � k0 a number l(k) such that the right hand side of the previous
inequality is at least 1 and l(k) → ∞ as k → ∞. In fact, by (5.1), we may choose k0 such that

1/a∫
1/ak

Φ−1(z)

z2
dz > 1

for all k > k0. Hence for all k > k0 there is m(k), 1/ak < m(k) < 1/a, such that

m(k)∫
1/ak

Φ−1(z)

z2
dz = 1.

By condition (5.1), limk→∞ m(k) = 0. Now, it is enough to set l(k) := 1/m(k)−a. Hence we conclude that the length
of the chain is at least 1.

Let then x ∈ B(x0, δ), where δ < 1 is so small that the assumptions given in the first part of the proof are fulfilled.
For each k � k0, we can choose a chain (Qi)

k
i=0, as above, such that one of the cubes contains the point x. This is

possible since the length of the chain is at least 1. Denote the cube in the chain containing x by Qk . Note that the size
of Qk tends to zero as k → ∞. By Lemma 3.8, u has a Lebesgue point at x, and therefore (5.6) yields

u(x) = lim
k→∞ −

∫
Qk

udx � lim
k→∞ −

∫
Qk

uh dx � C lim
k→∞ e−hl(k) = 0;

in the first inequality we used again that u � 1, by truncation, and assumed without loss of generality that h ∈ (0,1).
This completes the proof. �

Note that quasiminimizers are continuous [8]. Using the previous theorem for u − infu and supu − u we obtain
the following corollary.

Corollary 5.7 (Strong maximum principle). Under the assumptions of Theorem 5.3 a bounded, non-constant quasi-
minimizer cannot attain its infimum or its supremum in a domain.

Remark 5.8. Under certain circumstances it is possible to reformulate condition (5.1). Suppose that Ψ (t) := Φ(t)
t

is
of log-type, i.e.

Ψ
(
t2) ≈ Ψ (t)

for all t > 0. Then for some t0 > 0 we have

Φ(t)Φ−1(t) ≈ t2

for t ∈ [0, t0]. In fact, the required condition is equivalent to

Ψ
(
Φ(s)

) ≈ Ψ (s),

where t := Φ(s). Since s2 � Φ(s) � √
s on some interval [0, s0], the latter is clear. Hence the integrals

1∫
0

Φ−1(t)

t2
dt and

1∫
0

dt

Φ(t)

diverge simultaneously, i.e. the Dini-type condition (5.1) is equivalent to

1∫
0

dt

Φ(t)
= ∞

whenever Ψ is of log-type. The details of the proofs of these claims are left to the reader.
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