The aim of this paper is to show an existence theorem for a kinetic model of coagulation–fragmentation with initial data satisfying the natural physical bounds, and assumptions of finite number of particles and finite -norm. We use the notion of renormalized solutions introduced by DiPerna and Lions (1989) [3], because of the lack of a priori estimates. The proof is based on weak-compactness methods in , allowed by -norms propagation.
@article{AIHPC_2010__27_3_809_0,
author = {Broizat, Damien},
title = {A kinetic model for coagulation{\textendash}fragmentation},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {809--836},
year = {2010},
publisher = {Elsevier},
volume = {27},
number = {3},
doi = {10.1016/j.anihpc.2009.11.014},
mrnumber = {2629881},
zbl = {1190.82050},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2009.11.014/}
}
TY - JOUR AU - Broizat, Damien TI - A kinetic model for coagulation–fragmentation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2010 SP - 809 EP - 836 VL - 27 IS - 3 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2009.11.014/ DO - 10.1016/j.anihpc.2009.11.014 LA - en ID - AIHPC_2010__27_3_809_0 ER -
%0 Journal Article %A Broizat, Damien %T A kinetic model for coagulation–fragmentation %J Annales de l'I.H.P. Analyse non linéaire %D 2010 %P 809-836 %V 27 %N 3 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2009.11.014/ %R 10.1016/j.anihpc.2009.11.014 %G en %F AIHPC_2010__27_3_809_0
Broizat, Damien. A kinetic model for coagulation–fragmentation. Annales de l'I.H.P. Analyse non linéaire, Tome 27 (2010) no. 3, pp. 809-836. doi: 10.1016/j.anihpc.2009.11.014
[1] , Deterministic and stochastic models for coalescence (aggregation and coagulation): A review of the mean-field theory for probabilists, Bernoulli 5 no. 1 (1999), 3-48 | MR | Zbl
[2] , , Local and global strong solutions to continuous coagulation–fragmentation equations with diffusion, J. Differential Equations 218 no. 1 (2005), 159-186 | MR | Zbl
[3] , , On the Cauchy problem for Boltzmann equations: Global existence and weak stability, Ann. of Math. 130 (1989), 321-366 | MR | Zbl
[4] , , , regularity of velocity averages, Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (1991), 271-287 | MR | EuDML | Zbl | Numdam
[5] , , Existence, uniqueness and mass conservation for the coagulation–fragmentation equation., Math. Methods Appl. Sci. 19 no. 7 (1996), 571-591 | MR | Zbl
[6] , Solubility of the transport equation in the kinetics of coagulation and fragmentation., Izv. Math. 65 no. 1 (2001), 1-22 | MR
[7] , , , On a kinetic equation for coalescing particles, Comm. Math. Phys. 246 no. 2 (2004), 237-267 | MR | Zbl
[8] , , , On self-similarity and stationary problem for fragmentation and coagulation models., Ann. Inst. H. Poincaré Anal. Non Linéaire 22 no. 1 (2005), 99-125 | MR | EuDML | Zbl | Numdam
[9] , , Existence of self-similar solutions to Smoluchowski's coagulation equation., Comm. Math. Phys. 256 no. 3 (2005), 589-609 | MR | Zbl
[10] , Solutions globales du problème de Cauchy pour l'équation de Boltzmann, Séminaire Bourbaki 699 (1987–1988), 257-281 | MR | EuDML | Numdam
[11] , , A kinetic description of particle fragmentation, Math. Models Methods Appl. Sci. 16 no. 6 (2006), 933-948 | MR | Zbl
[12] , , Existence to solutions of a kinetic aerosol model, Nonlinear Partial Differential Equations and Related Analysis, Contemp. Math. vol. 371, Amer. Math. Soc., Providence, RI (2005), 181-192 | MR | Zbl
[13] , Existence and uniqueness results for the continuous coagulation and fragmentation equation, Math. Methods Appl. Sci. 27 no. 6 (2004), 703-721 | MR | Zbl
[14] , Self-similar solutions to a coagulation equation with multiplicative kernel, Phys. D 222 no. 1–2 (2006), 80-87 | MR | Zbl
[15] , , Global existence for the discrete diffusive coagulation–fragmentation equations in , Rev. Mat. Iberoamericana 18 no. 3 (2002), 731-745 | MR | EuDML | Zbl
[16] , , From the discrete to the continuous coagulation–fragmentation equations, Proc. Roy. Soc. Edinburgh. Sect. A 132 no. 5 (2002), 1219-1248 | MR | Zbl
[17] , , The continuous coagulation–fragmentation equations with diffusion, Arch. Rational. Mech. Anal. 162 (2002), 45-99 | MR | Zbl
[18] , , Convergence to equilibrium for the continuous coagulation–fragmentation equation., Bull. Sci. Math. 127 no. 3 (2003), 179-190 | MR | Zbl
[19] , , Existence globale pour l'équation de Smoluchowski continue non homogène et comportement asymptotique des solutions, C. R. Math. Acad. Sci. Paris 336 no. 5 (2003), 407-412 | MR
[20] , Zur allgemeinen Theorie der raschen Koagulation, Kolloidchemische Beihefte 27 (1928), 223-250
[21] , Drei Vorträge über Diffusion. Brownsche Molekularbewegung und Koagulation von Kolloidteilchen, Physik Zeitschr. 17 (1916), 557-599
[22] , Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen, Zeitschrift f. physik. Chemie 92 (1917), 129-168
[23] , A global existence theorem for the general coagulation–fragmentation equation with unbounded kernels, Math. Methods Appl. Sci. 11 no. 5 (1989), 627-648 | MR | Zbl
[24] , A uniqueness theorem for the coagulation–fragmentation equation, Math. Proc. Cambridge Philos. Soc. 107 no. 3 (1990), 573-578 | MR | Zbl
Cité par Sources :






