@article{AIHPC_2008__25_3_539_0,
author = {Barutello, Vivina and Secchi, Simone},
title = {Morse index properties of colliding solutions to the $N$-body problem},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {539--565},
year = {2008},
publisher = {Elsevier},
volume = {25},
number = {3},
doi = {10.1016/j.anihpc.2007.02.005},
zbl = {1143.70006},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2007.02.005/}
}
TY - JOUR AU - Barutello, Vivina AU - Secchi, Simone TI - Morse index properties of colliding solutions to the $N$-body problem JO - Annales de l'I.H.P. Analyse non linéaire PY - 2008 SP - 539 EP - 565 VL - 25 IS - 3 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2007.02.005/ DO - 10.1016/j.anihpc.2007.02.005 LA - en ID - AIHPC_2008__25_3_539_0 ER -
%0 Journal Article %A Barutello, Vivina %A Secchi, Simone %T Morse index properties of colliding solutions to the $N$-body problem %J Annales de l'I.H.P. Analyse non linéaire %D 2008 %P 539-565 %V 25 %N 3 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2007.02.005/ %R 10.1016/j.anihpc.2007.02.005 %G en %F AIHPC_2008__25_3_539_0
Barutello, Vivina; Secchi, Simone. Morse index properties of colliding solutions to the $N$-body problem. Annales de l'I.H.P. Analyse non linéaire, Tome 25 (2008) no. 3, pp. 539-565. doi: 10.1016/j.anihpc.2007.02.005
[1] , Ordinary Differential Equations. An Introduction to Nonlinear Analysis, De Gruyter Studies in Mathematics, vol. 13, W. de Gruyter, 1990. | Zbl | MR
[2] , , Periodic Solutions of Singular Lagrangian Systems, Progr. Nonlinear Differential Equations and their Appl., vol. 10, Birkhäuser Boston Inc., Boston, MA, 1993. | Zbl | MR
[3] , , Periodic solutions of Hamiltonian systems of 3-body type, Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (6) (1991) 561-649. | Zbl | MR | Numdam
[4] , On the n-body problem, Ph.D. thesis, Università di Milano-Bicocca, Milano 2004. Available on-line at, http://www.matapp.unimib.it/.
[5] , , , On the singularities of generalized solutions to the n-body problem, Preprint, 2006. Available on arXiv:, math.DS/0701174.
[6] , , Minima de l’intégrale d’action du problème Newtonien de 4 corps de masses égales dans : orbites “hip-hop”, Celestial Mech. Dynam. Astronom. 77 (2000) 139-152. | Zbl | MR
[7] , A class of periodic solutions of the N-body problem, Celestial Mech. Dynam. Astronom. 46 (2) (1989) 177-186. | Zbl | MR
[8] , Periodic solutions for N-body type problem, Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (5) (1990) 477-492. | Zbl | MR | Numdam
[9] , , Collision and non-collision solutions for a class of Keplerian-like dynamical systems, Ann. Mat. Pura Appl. (4) 166 (1994) 343-362. | Zbl | MR
[10] , Non-collision periodic solutions of the N-body system, NoDEA, Nonlinear Differential Equations Appl. 5 (1998) 117-136. | Zbl | MR
[11] , , On the existence of collisionless equivariant minimizers for the classical n-body problem, Invent. Math. 155 (2) (2004) 305-362. | Zbl | MR
[12] , Conservative dynamical systems involving strong forces, Trans. Amer. Math. Soc. 204 (1975) 113-135. | Zbl | MR
[13] , , Finiteness of relative equilibria of the four-body problem, Invent. Math. 163 (2) (2006) 289-312. | Zbl | MR
[14] , Triple collision in the collinear three-body problem, Invent. Math. 27 (1974) 191-227. | Zbl | MR | EuDML
[15] , On central configurations, Math. Z. 205 4 (1990) 499-517. | Zbl | MR | EuDML
[16] , Central configurations and the equivariant Morse theory, Arch. Ration. Mech. Anal. 97 (1987) 59-74. | Zbl | MR
[17] , Leçons sur la théorie analytique des équations différentielles, Hermann, Paris, 1897. | JFM
[18] , Celestial Mechanics, Carus Mathematical Monographs, vol. 18, Mathematical Association of America, 1976. | Zbl | MR
[19] , Study of the generalized solutions of n-body type problems with weak force, Nonlinear Anal. 28 (1) (1997) 49-59. | Zbl | MR
[20] , Avoiding collisions in singular potential problems, in: Variational Methods in Nonlinear Analysis, Erice, 1992, Gordon and Breach, Basel, 1995, pp. 173-185. | Zbl | MR
[21] , , Collisionless periodic solutions to some three-body problems, Arch. Ration. Mech. Anal. 120 (4) (1992) 305-325. | Zbl | MR
[22] , , Noncollision solutions to some singular minimization problems with Keplerian-like potentials, Nonlinear Anal. 22 (1) (1994) 45-62. | Zbl | MR
[23] , Diagonal and Relative Equilibria, Lecture Notes in Math., vol. 197, Springer, Berlin, 1971. | MR
[24] , On the real singularities of the N-body problem, J. Reine Angew. Math. 245 (1970) 15-40. | Zbl | MR
[25] , Mémoire sur le problème des trois corps, Acta Math. 36 (1913) 105-179. | MR | JFM
[26] , Non-collision solutions for a second order singular Hamiltonian system with weak force, Ann. Inst. H. Poincaré 10 (2) (1993) 215-238. | Zbl | MR | Numdam
[27] , , Symmetric trajectories for the 2N-body problem with equal masses, Arch. Ration Mech. Anal. 184 (2007) 465-493. | Zbl | MR
[28] , The Analytical Foundation of Celestial Mechanics, Princeton University Press, Princeton, NJ, 1941. | Zbl | MR | JFM
[29] , Sur les singularités du problème des n corps, Ark. Math. Astr. Fys. 4 (32) (1908). | JFM
Cité par Sources :





