@article{AIHPC_2005__22_2_143_0,
author = {Malchiodi, A. and Ni, Wei-Ming and Wei, Juncheng},
title = {Multiple clustered layer solutions for semilinear {Neumann} problems on a ball},
journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
pages = {143--163},
year = {2005},
publisher = {Elsevier},
volume = {22},
number = {2},
doi = {10.1016/j.anihpc.2004.05.003},
mrnumber = {2124160},
zbl = {02165096},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpc.2004.05.003/}
}
TY - JOUR AU - Malchiodi, A. AU - Ni, Wei-Ming AU - Wei, Juncheng TI - Multiple clustered layer solutions for semilinear Neumann problems on a ball JO - Annales de l'I.H.P. Analyse non linéaire PY - 2005 SP - 143 EP - 163 VL - 22 IS - 2 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2004.05.003/ DO - 10.1016/j.anihpc.2004.05.003 LA - en ID - AIHPC_2005__22_2_143_0 ER -
%0 Journal Article %A Malchiodi, A. %A Ni, Wei-Ming %A Wei, Juncheng %T Multiple clustered layer solutions for semilinear Neumann problems on a ball %J Annales de l'I.H.P. Analyse non linéaire %D 2005 %P 143-163 %V 22 %N 2 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2004.05.003/ %R 10.1016/j.anihpc.2004.05.003 %G en %F AIHPC_2005__22_2_143_0
Malchiodi, A.; Ni, Wei-Ming; Wei, Juncheng. Multiple clustered layer solutions for semilinear Neumann problems on a ball. Annales de l'I.H.P. Analyse non linéaire, Tome 22 (2005) no. 2, pp. 143-163. doi: 10.1016/j.anihpc.2004.05.003
[1] , , , Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres, Part I, Comm. Math. Phys. 235 (2003) 427-466. | Zbl | MR
[2] , , , Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres, Part II, Indiana Univ. Math. J. 53 (2004) 297-329. | Zbl | MR
[3] , , Equilibria with many nuclei for the Cahn-Hilliard equation, J. Differential Equations 160 (2000) 283-356. | Zbl | MR
[4] , , , Multi-spike stationary solutions of the Cahn-Hilliard equation in higher-dimension and instability, Adv. Differential Equations 4 (1999) 1-69. | Zbl | MR
[5] , , Uniqueness of the ground state solution of in , Comm. PDE 16 (1991) 1549-1572. | Zbl | MR
[6] , , Spike-layered solutions of singularly perturbed elliptic problems in a degenerate setting, Indiana Univ. Math. J. 48 (3) (1999) 883-898. | Zbl | MR
[7] , , , Two-bubble solutions in the super-critical Bahri-Coron's problem, Cal. Var. PDE 16 (2) (2003) 113-145. | Zbl | MR
[8] , , , On the role of mean curvature in some singularly perturbed Neumann problems, SIAM J. Math. Anal. 31 (1999) 63-79. | Zbl | MR
[9] , , , On the role of distance function in some singularly perturbed problems, Comm. PDE 25 (2000) 155-177. | Zbl | MR
[10] , , , Mutiple peak solutions for some singular perturbation problems, Cal. Var. PDE 10 (2000) 119-134. | Zbl | MR
[11] , , Multipeak solutions for a singular perturbed Neumann problem, Pacific J. Math. 189 (1999) 241-262. | Zbl | MR
[12] , , Multi-layer solutions for an elliptic problem, J. Differential Equations 194 (2003) 382-405. | Zbl | MR
[13] , , Multiple interior spike solutions for some singular perturbed Neumann problems, J. Differential Equations 158 (1999) 1-27. | Zbl | MR
[14] , , On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems, Can. J. Math. 52 (2000) 522-538. | Zbl | MR
[15] , , , Multiple boundary peak solutions for some singularly perturbed Neumann problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (2000) 249-289. | Zbl | MR | Numdam
[16] , , , Existence of multipeak solutions for a semilinear Neumann problem via nonsmooth critical point theory, Cal. Var. PDE 11 (2000) 143-175. | Zbl | MR
[17] , On a singularly perturbed equation with Neumann boundary condition, Comm. PDE 23 (1998) 487-545. | Zbl | MR
[18] , , The Dirichlet problem for singularly perturbed elliptic equations, Comm. Pure Appl. Math. 51 (1998) 1445-1490. | Zbl | MR
[19] , , , Large amplitude stationary solutions to a chemotaxis systems, J. Differential Equations 72 (1988) 1-27. | Zbl | MR
[20] , , Boundary concentration phenomena for a singularly perturbed elliptic problem, Comm. Pure Appl. Math. 55 (2002) 1507-1508. | Zbl | MR
[21] , , Clustering layers and boundary layers in spatially inhomogeneous phase transition problems, AIHP Analyse Nonlineaire 20 (1) (2003) 107-143. | Zbl | MR | Numdam
[22] , Diffusion, cross-diffusion, and their spike-layer steady states, Notices Amer. Math. Soc. 45 (1998) 9-18. | Zbl | MR
[23] , , On the shape of least energy solution to a semilinear Neumann problem, Comm. Pure Appl. Math. 41 (1991) 819-851. | Zbl | MR
[24] , , Locating the peaks of least energy solutions to a semilinear Neumann problem, Duke Math. J. 70 (1993) 247-281. | Zbl | MR
[25] , , Point-condensation generated by a reaction-diffusion system in axially symmetric domains, Japan J. Industrial Appl. Math. 12 (1995) 327-365. | Zbl | MR
[26] , , , On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems: intermediate solutions, Duke Math. J. 94 (1998) 597-618. | Zbl | MR
[27] , , On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems, Comm. Pure Appl. Math. 48 (1995) 731-768. | Zbl | MR
[28] , On the construction of single-peaked solutions to a singularly perturbed semilinear Dirichlet problem, J. Differential Equations 129 (1996) 315-333. | Zbl | MR
[29] , On the boundary spike layer solutions of singularly perturbed semilinear Neumann problem, J. Differential Equations 134 (1997) 104-133. | Zbl | MR
[30] , On the interior spike layer solutions to a singularly perturbed Neumann problem, Tohoku Math. J. 50 (1998) 159-178. | Zbl | MR
[31] , On the effect of the domain geometry in a singularly perturbed Dirichlet problem, Differential Integral Equations 13 (2000) 15-45. | Zbl | MR
[32] , , Stationary solutions for the Cahn-Hilliard equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998) 459-492. | Zbl | MR | Numdam
[33] , , Multiple boundary spike solutions for a wide class of singular perturbation problems, J. London Math. Soc. 59 (1999) 585-606. | Zbl | MR
Cité par Sources :






