@article{AIHPC_2000__17_6_711_0, author = {Demoulini, Sophia and Stuart, David M. A. and Tzavaras, Athanasios E.}, title = {Construction of entropy solutions for one dimensional elastodynamics via time discretisation}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {711--731}, publisher = {Gauthier-Villars}, volume = {17}, number = {6}, year = {2000}, mrnumber = {1804652}, zbl = {0988.74031}, language = {en}, url = {http://www.numdam.org/item/AIHPC_2000__17_6_711_0/} }
TY - JOUR AU - Demoulini, Sophia AU - Stuart, David M. A. AU - Tzavaras, Athanasios E. TI - Construction of entropy solutions for one dimensional elastodynamics via time discretisation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2000 SP - 711 EP - 731 VL - 17 IS - 6 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPC_2000__17_6_711_0/ LA - en ID - AIHPC_2000__17_6_711_0 ER -
%0 Journal Article %A Demoulini, Sophia %A Stuart, David M. A. %A Tzavaras, Athanasios E. %T Construction of entropy solutions for one dimensional elastodynamics via time discretisation %J Annales de l'I.H.P. Analyse non linéaire %D 2000 %P 711-731 %V 17 %N 6 %I Gauthier-Villars %U http://www.numdam.org/item/AIHPC_2000__17_6_711_0/ %G en %F AIHPC_2000__17_6_711_0
Demoulini, Sophia; Stuart, David M. A.; Tzavaras, Athanasios E. Construction of entropy solutions for one dimensional elastodynamics via time discretisation. Annales de l'I.H.P. Analyse non linéaire, Volume 17 (2000) no. 6, pp. 711-731. http://www.numdam.org/item/AIHPC_2000__17_6_711_0/
[1] Remarques sur l'existence et la régularité des solutions d'élastostatique non linéaire, in: Berestykci H., Brezis H. (Eds.), Recent Contributions of Nonlinear PDE, Pitman Research Notes in Mathematics 50, Pitman, Boston, 1981, pp. 50- 62. | MR | Zbl
,[2] Decay of entropy solutions of nonlinear conservation laws, Arch. Rational Mech. Anal. 146 (1999) 95-127. | MR | Zbl
, ,[3] Estimates for conservation laws with little viscosity, SIAM J. Math. Anal. 18 (1987) 409-421. | MR | Zbl
,[4] Young measure solutions for nonlinear evolutionary systems of mixed type, Annales de l'I.H.P., Analyse Non Linéaire 14 (1) (1997) 143-162. | EuDML | Numdam | MR | Zbl
,[5] Weak solutions for a class of nonlinear systems of viscoelasticity, Arch. Rat. Mech. Analysis, to appear. | MR | Zbl
,[6] A variational approximation scheme for three dimensional elastodynamics with polyconvex energy, preprint. | Zbl
, , ,[7] Convergence of approximate solutions to conservation laws, Arch. Rational Mech. Analysis 82 (1983) 27-70. | MR | Zbl
,[8] Numerical Approximation of Hyperbolic Systems of Conservation Laws, Springer-Verlag, New York, 1996. | MR | Zbl
, ,[9] Lectures on Nonlinear Hyperbolic Differential Equations, Springer-Verlag, Berlin, 1997. | MR | Zbl
,[10] Weak convergence of integrands and the Young measure representation, SIAM J. Math. Anal. 23 (1992) 1-19. | MR | Zbl
, ,[11] Shock waves and entropy, in: Zarantonello E.H. (Ed.), Contributions to Nonlinear Functional Analysis, New York, Academic Press, 1971, pp. 603-634. | MR | Zbl
,[12] Young measures and an application of compensated compactness to one-dimensional nonlinear elastodynamics, Trans. Amer. Math. Soc. 329 (1992) 377- 413. | MR | Zbl
,[13] L'injection du cône positif de H-1 dans W-1,q est compacte pour tout q < 2, J. Math. Pures Appl. 60 (1981) 309-322. | Zbl
,[14] Young-measure solutions for diffusion elasticity equations, preprint.
,[ 15] Relaxation semi-linéaire et cinétique des systèmes de lois de conservation, preprint.
,[16] Convergence with physical viscosity for nonlinear elasticity, 1993, (unpublished manuscript).
, ,[17] Global existence and compactness in Lp for the quasi-linear wave equation, Comm. Partial Diff. Eq. 19 (1994) 1829-1877. | MR | Zbl
,[18] Compensated compactness and applications to partial differential quations, in: Knops Nonlinear Analysis and Mechanics, IV Heriot-Watt Symposium, Vol. IV, Pitman Research Notes in Mathematics, Pitman, Boston, 1979, pp. 136- 192. | MR | Zbl
,[19] Materials with internal variables and relaxation to conservation laws, Arch. Rational Mech. Anal. 146 (1999) 129-155. | MR | Zbl
,