@article{AIHPC_1999__16_1_107_0, author = {Alessio, Francesca and Montecchiari, Piero}, title = {Multibump solutions for a class of lagrangian systems slowly oscillating at infinity}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {107--135}, publisher = {Gauthier-Villars}, volume = {16}, number = {1}, year = {1999}, mrnumber = {1668564}, zbl = {0919.34044}, language = {en}, url = {http://www.numdam.org/item/AIHPC_1999__16_1_107_0/} }
TY - JOUR AU - Alessio, Francesca AU - Montecchiari, Piero TI - Multibump solutions for a class of lagrangian systems slowly oscillating at infinity JO - Annales de l'I.H.P. Analyse non linéaire PY - 1999 SP - 107 EP - 135 VL - 16 IS - 1 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPC_1999__16_1_107_0/ LA - en ID - AIHPC_1999__16_1_107_0 ER -
%0 Journal Article %A Alessio, Francesca %A Montecchiari, Piero %T Multibump solutions for a class of lagrangian systems slowly oscillating at infinity %J Annales de l'I.H.P. Analyse non linéaire %D 1999 %P 107-135 %V 16 %N 1 %I Gauthier-Villars %U http://www.numdam.org/item/AIHPC_1999__16_1_107_0/ %G en %F AIHPC_1999__16_1_107_0
Alessio, Francesca; Montecchiari, Piero. Multibump solutions for a class of lagrangian systems slowly oscillating at infinity. Annales de l'I.H.P. Analyse non linéaire, Volume 16 (1999) no. 1, pp. 107-135. http://www.numdam.org/item/AIHPC_1999__16_1_107_0/
[1] Homoclinic solutions for second order systems with expansive time dependence, preprint, 1996. | MR
,[2] Semiclassical states of nonlinear Schrödinger equation, Arch. Rat. Mech. Anal., to appear. | Zbl
, and ,[3] Homoclinics for second order conservative systems, Partial differential equation and related subjects, Ed. M.Miranda, Pitman Research Notes in Math. Ser., 1992. | MR | Zbl
and , ,[4] Multiple homoclinic orbits for a class of conservative systems, Rend. Sem. Mat. Padova, Vol. 89,1993, pp. 177-194. | Numdam | MR | Zbl
and ,[5] A Variational Proof of a Sitnikov-like Theorem, Nonlinear Anal. TMA, Vol. 20, 1993, pp. 1303-1318. | MR | Zbl
,[6] A variational approach for homoclinics in almost periodic Hamiltonian systems, Comm. Appl. Nonlinear Analysis, Vol. 2, 1995, pp. 43-57. | MR | Zbl
and ,[7] Existence of homoclinic motions, Vestnik Moskov. Univ. Ser. I Mat. MeKh., Vol.6, 1980, pp. 98-103. | MR | Zbl
,[8] A global condition for quasi random behaviour in a class of conservative systems, preprint, 1995. | MR
and ,[9] Homoclinics orbits for second order Hamiltonian systems with potential changing sign, Comm. Appl. Nonlinear Analysis, Vol. 1, 1994, pp. 97-129. | MR | Zbl
and ,[10] Asymptotic behaviour for a class of multibump solutions to Duffing-like systems, Proc. of the Workshop on Variational and Local Methods in the study of Hamiltonian systems, World Scientific, 1995. | MR | Zbl
, and ,[11] Pseudo-holomorphic curves and the shadowing Lemma, Duke Math. Journ., to appear. | Zbl
and ,[12] A variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann., Vol. 288, 1990, pp. 133-160. | MR | Zbl
, and ,[13] Multibump homoclinic solutions for a class of second order, almost periodic Hamiltonian systems, NODEA, to appear. | Zbl
, and ,[14] Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc., Vol. 4, 1991, pp. 693-727. | MR | Zbl
and ,[15] Multipeak bound states for nonlinear Schrödinger equations, Ann. IHP Anal. Nonlinéaire, to appear. | Numdam | MR | Zbl
and ,[16] Existence of multi-bump solutions for nonlinear Schrödinger equations via variational methods, Comm. in PDE, Vol. 21, 1996, pp. 787-820. | MR | Zbl
,[17] First order elliptic systems and the existence of homoclinic orbits in Hamiltonian systems, Math. Ann., Vol. 228, 1990, pp. 483-503. | MR | Zbl
and ,[18] The concentration-compactness principle in the calculus of variations. The locally compact case, part 1., part 2., Ann.IHP Anal. Nonlinéaire, Vol. 1, 1984, pp. 109-145, 223-283. | Numdam | MR | Zbl
,[19] Un'osservazione su un teorema di Brouwer, Boll. Unione Mat. Ital., Vol. 3, 1940, pp. 5-7. | MR | Zbl
,[20] Existence and multiplicity of homoclinic solutions for a class of asymptotically periodic second order Hamiltonian systems, Ann. Mat. Pura Appl. (IV), Vol. 168, 1995, pp. 317-354. | MR | Zbl
,[21] Multiplicity of homoclinics for time recurrent second order systems, Calculus of Variations, to appear. | Zbl
, and ,[22] A global condition for periodic Duffing-like equations, preprint, SISSA, 1995. | MR | Zbl
, and ,[23] Homoclinic orbits for a class of Hamiltonian systems, Proc. Roy. Soc. Edinburgh, Vol. 114 A, 1990, pp. 33-38. | MR | Zbl
,[24] Multibump solutions for an almost periodically forced singular Hamiltonian system, preprint, 1995. | MR | Zbl
,[25] A multibump construction in a degenerate setting, preprint, 1996. | MR | Zbl
,[26] Some results on connecting orbits for a class of Hamiltonian systems, Math. Z., Vol 206, 1991, pp. 473-479. | MR | Zbl
and ,[27] Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Zeit., Vol. 209, 1991, pp. 27-42. | MR | Zbl
,[28] Looking for the Bernoulli shift, Ann. IHP Anal. Nonlinéaire, Vol. 10, 1993, pp. 561-590. | Numdam | MR | Zbl
,[29] On the existence of homoclinic solutions for almost periodic second order systems, Ann. IHP Anal. Nonlinéaire, to appear. | Numdam | MR | Zbl
, and ,[30] Global bifurcation and chaos, Applied Mathematical Sciences, Springer-Verlag, Vol. 73,1988. | Zbl
,