@article{AIHPC_1996__13_3_337_0, author = {Hofer, Helmut and Wysocki, K. and Zehnder, E.}, title = {Properties of pseudoholomorphic curves in symplectisations. {I} : asymptotics}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {337--379}, publisher = {Gauthier-Villars}, volume = {13}, number = {3}, year = {1996}, zbl = {0861.58018}, mrnumber = {1395676}, language = {en}, url = {http://www.numdam.org/item/AIHPC_1996__13_3_337_0/} }
TY - JOUR AU - Hofer, Helmut AU - Wysocki, K. AU - Zehnder, E. TI - Properties of pseudoholomorphic curves in symplectisations. I : asymptotics JO - Annales de l'I.H.P. Analyse non linéaire PY - 1996 DA - 1996/// SP - 337 EP - 379 VL - 13 IS - 3 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPC_1996__13_3_337_0/ UR - https://zbmath.org/?q=an%3A0861.58018 UR - https://www.ams.org/mathscinet-getitem?mr=1395676 LA - en ID - AIHPC_1996__13_3_337_0 ER -
Hofer, H.; Wysocki, K.; Zehnder, E. Properties of pseudoholomorphic curves in symplectisations. I : asymptotics. Annales de l'I.H.P. Analyse non linéaire, Tome 13 (1996) no. 3, pp. 337-379. http://www.numdam.org/item/AIHPC_1996__13_3_337_0/
[1] Holomorphic Curves and Global Questions in Contact Geometry, Nachdiplomvorlesung E.T.H.Z., to appear in Birkhäuser.
and ,[2] Symplectic homology I, open sets in Cn, Math. Z., Vol. 215, 1994, pp. 37-88. | MR 1254813 | Zbl 0810.58013
and ,[3] Pseudoholomorphic curves in symplectic manifolds, Invent. Math., Vol. 82, 1985, pp. 307-347. | MR 809718 | Zbl 0592.53025
,[4] Pseudoholomorphic curves in symplectization with applications to the Weinstein conjecture in dimension three, Invent. Math., Vol. 114, 1993, pp. 515-563. | MR 1244912 | Zbl 0797.58023
,[5] Properties of pseudoholomorphic curves in symplectisations II: Embedding controls and algebraic invariants, Geometrical and Functional Analysis, Vol. 5, No. 2, 1995, pp. 270-328. | MR 1334869 | Zbl 0845.57027
, and ,[6] Properties of pseudoholomorphic curves in symplectisations III: Fredholm theory, preprint.
, and ,[7] A characterisation of the tight three-sphere, to appear Duke Math. Journal. | Zbl 0861.57026
, and ,[8] The dynamics on a strictly convex energy surface in R4, preprint.
, and ,[9] Symplectic Invariants and Hamiltonian Dynamics, Birkhäuser Advanced Texts, 1994.. | MR 1306732 | Zbl 0805.58003
and ,[10] Perturbation theory for linear operators, Springer 1966. | MR 407617 | Zbl 0148.12601
,[11] Formes de contact sur les variétés de dimension 3, Springer Lecture Notes in Math., Vol. 209, 1971, pp. 142-163. | MR 350771 | Zbl 0215.23003
,[12] Singular integrals and differentiability properties of functions, Princeton University Press, 1970. | MR 290095 | Zbl 0207.13501
,