Geodesics on product lorentzian manifolds
Annales de l'I.H.P. Analyse non linéaire, Volume 12 (1995) no. 1, pp. 27-60.
@article{AIHPC_1995__12_1_27_0,
     author = {Giannoni, F. and Masiello, A.},
     title = {Geodesics on product lorentzian manifolds},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {27--60},
     publisher = {Gauthier-Villars},
     volume = {12},
     number = {1},
     year = {1995},
     mrnumber = {1320567},
     zbl = {0839.53046},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_1995__12_1_27_0/}
}
TY  - JOUR
AU  - Giannoni, F.
AU  - Masiello, A.
TI  - Geodesics on product lorentzian manifolds
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 1995
SP  - 27
EP  - 60
VL  - 12
IS  - 1
PB  - Gauthier-Villars
UR  - http://www.numdam.org/item/AIHPC_1995__12_1_27_0/
LA  - en
ID  - AIHPC_1995__12_1_27_0
ER  - 
%0 Journal Article
%A Giannoni, F.
%A Masiello, A.
%T Geodesics on product lorentzian manifolds
%J Annales de l'I.H.P. Analyse non linéaire
%D 1995
%P 27-60
%V 12
%N 1
%I Gauthier-Villars
%U http://www.numdam.org/item/AIHPC_1995__12_1_27_0/
%G en
%F AIHPC_1995__12_1_27_0
Giannoni, F.; Masiello, A. Geodesics on product lorentzian manifolds. Annales de l'I.H.P. Analyse non linéaire, Volume 12 (1995) no. 1, pp. 27-60. http://www.numdam.org/item/AIHPC_1995__12_1_27_0/

[1] V. Benci and D. Fortunato, On the existence of infinitely many geodesics on space-time manifolds, Adv. Math., to appear. | MR | Zbl

[2] V. Benci, D. Fortunato and A. Masiello, Geodesics on Lorentzian manifolds, preprint Dip. Mat. Univ. Bari, 1992.

[3] V. Benci, D. Fortunato and A. Masiello, On the geodesic connectedeness of Lorentzian manifolds, Math. Z, to appear. | MR | Zbl

[4] E. Fadell, Lectures in chomological index theories of G-spaces with applications to critical point theory, Sem. Dip. Mat. Universita' della Calabria, Cosenza, 1985. | MR

[5] E. Fadell and A. Husseini, Relative category and homology products, preprint.

[6] G. Fournier, D. Lupo, M. Ramos and M. Willem, Limit relative category and critical point theory, report Inst. Math. Pure Appl., Université Catholique de Louvain, 1990.

[7] G. Fournier and M. Willem, Relative category and the calculus of variations, in "Variational problems", H. Beresticky, J. M. Coron and I. Ekeland, eds., Birkhäuser, Basel, 1990. | MR | Zbl

[8] R. Geroch, Domains of dependence, J. Math. Phys., Vol. 11, 1970, pp..437-449. | Zbl

[9] F. Giannoni and A. Masiello, On the existence of geodesics on stationary Lorentz manifolds with convex boundary, Jour. Funct. Analysis, Vol. 101, 1991, pp. 340-369. | MR | Zbl

[10] J. Milnor, Morse Theory, Ann. Math. Studies, Vol. 51, Princeton 1963. | Zbl

[11] J. Nash, The embedding problem for Riemannian manifolds, Ann. Math., Vol. 63, 1956, pp. 20-63. | Zbl

[12] B. O'Neill, Semi-Riemannian geometry with applications to relativity, Academic Press, New York-London, 1983. | MR | Zbl

[13] R.S. Palais, Critical point theory and the minimax principle, Global Anal., Proc. Sym. Pure Math. Amer. Math. Soc., Vol. 15, 1970, pp. 185-202. | MR | Zbl

[14] R. Penrose, Techniques of differential topology in relativity, S.I.A.M., Philadelphia, 1972. | MR | Zbl

[15] P.H. Rabinowitz, A minimax principle and application to elliptic partial differential equations, Proc. "Nonlinear Partial Differential Equations", Lect. Note Math., Vol. 648, Springer, Berlin-Heidelberg-New York, 1978. | MR | Zbl

[16] J.T. Schwartz, Nonlinear functional analysis, Gordon and Breach, New York, 1969. | MR | Zbl

[17] A. Szulkin, A relative category and applications to critical point theory for strongly indefinite functionals, Nonlin. Anal. T.M.A., Vol. 15, n° 8, 1990, pp. 725-7339. | MR | Zbl