Adjoint differential inclusions in necessary conditions for the minimal trajectories of differential inclusions
Annales de l'I.H.P. Analyse non linéaire, Volume 2 (1985) no. 2, pp. 75-99.
@article{AIHPC_1985__2_2_75_0,
     author = {Frankowska, H.},
     title = {Adjoint differential inclusions in necessary conditions for the minimal trajectories of differential inclusions},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {75--99},
     publisher = {Gauthier-Villars},
     volume = {2},
     number = {2},
     year = {1985},
     mrnumber = {794001},
     zbl = {0576.49013},
     language = {en},
     url = {http://www.numdam.org/item/AIHPC_1985__2_2_75_0/}
}
TY  - JOUR
AU  - Frankowska, H.
TI  - Adjoint differential inclusions in necessary conditions for the minimal trajectories of differential inclusions
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 1985
SP  - 75
EP  - 99
VL  - 2
IS  - 2
PB  - Gauthier-Villars
UR  - http://www.numdam.org/item/AIHPC_1985__2_2_75_0/
LA  - en
ID  - AIHPC_1985__2_2_75_0
ER  - 
%0 Journal Article
%A Frankowska, H.
%T Adjoint differential inclusions in necessary conditions for the minimal trajectories of differential inclusions
%J Annales de l'I.H.P. Analyse non linéaire
%D 1985
%P 75-99
%V 2
%N 2
%I Gauthier-Villars
%U http://www.numdam.org/item/AIHPC_1985__2_2_75_0/
%G en
%F AIHPC_1985__2_2_75_0
Frankowska, H. Adjoint differential inclusions in necessary conditions for the minimal trajectories of differential inclusions. Annales de l'I.H.P. Analyse non linéaire, Volume 2 (1985) no. 2, pp. 75-99. http://www.numdam.org/item/AIHPC_1985__2_2_75_0/

[1] J.P. Aubin, Applied Functional Analysis. 1979, Wiley Inter-Science. | MR | Zbl

[2] J.P. Aubin, F.H. Clarke, Shadow prices and duality for a class of optimal control problems. SIAM J. of Control, t. 17, no. 5, 1979, p. 567-586. | MR | Zbl

[3] J.P. Aubin, I. Ekeland, Applied Nonlinear Analysis, 1984, Wiley Interscience. | MR | Zbl

[4] J.P. Aubin and A. Cellina, Differential Inclusions, 1984, Springer-Verlag. | MR | Zbl

[5] F.H. Clarke, Generalized Gradient and Applications. Trans. Amer. Math. Soc., t. 205, 1975, p. 247-262. | MR | Zbl

[6] F.H. Clarke, The generalized problem of Bolza. SIAM J. of Control, t. 14, 1976, p. 682-699. | MR | Zbl

[7] F.H. Clarke, Optimal solutions to differential inclusions. J. Opt. Theory Appl., t. 19, no. 3, 1976, p. 469-478. | MR | Zbl

[8] F.H. Clarke, Optimization and Non-smooth Analysis, 1983. Wiley Interscience. | Zbl

[9] I. Ekeland and R. Temam, Analyse convexe et problèmes variationels, 1974, Dunod, Paris. | MR | Zbl

[10] H. Frankowska, Contrôlabilité locale et propriétés des semi-groupes de correspondance, CRAS, t. 299, 1984 (Detailed version to appear). | MR

[11] H. Frankowska, C. Olech, Boundary solutions to differential inclusions. J. Diff. Eqs., t. 44, 1982, p. 156-165. | MR | Zbl

[12] A. Ioffe, Non-smooth analysis: differential calculus of nondifferentiable mappings. Trans. Amer. Math. Soc., t. 266, (1), 1981, p. 1-56. | Zbl

[13] J.M. Lasry and H. Berliocchi, Principe de Pontriagin pour des systèmes régis par une equation différentielle multivoque. C. R. Acad. Sci., Paris, t. 277, 1973, p. 1103-1105. | MR | Zbl

[14] J.P. Penot and P. Terpolilli, Cônes tangents et singularités. C. R. Acad. Sci., Paris, t. 296, 1983, p. 721-724. | MR | Zbl

[15] L. Pontriagin, V. Boltyanskii, V. Gamkrelidze, E. Mischenko, The mathematical theory of optimal process, 1962. Wiley Interscience Publishers, New York. | MR | Zbl

[16] R.T. Rockafellar, Existence theorems for general control problems of Bolza and Lagrange. Adv. in Math. t. 15, 1975, p. 312-323. | MR | Zbl

[17] R.T. Rockafellar, Generalized directional derivatives and subgradients of non-convex functions. Canad. J. Math., t. 32, 1980, p. 257-280. | MR | Zbl

[18] R.T. Rockafellar, Convex analysis, 1970. Princeton University Press, Princeton, New Jersey. | MR | Zbl

[19] C. Ursescu, Tangent set's calculus and necessary conditions for extremality. SIAM J. of Control, t. 20, (4), 1982, p. 563-574. | MR | Zbl

[20] D.H. Wagner, Survey of measurable selection theorems. SIAM J. of Control, t. 15, 1977, p. 859-903. | MR | Zbl

[21] T. Ważewski, On an optimal control problem, Proc. Conference Differential equations and their applications, Prague, 1964, p. 229-242. | MR | Zbl