In this article we prove the pathwise uniqueness for stochastic differential equations in with time-dependent Sobolev drifts, and driven by symmetric -stable processes provided that and its spectral measure is non-degenerate. In particular, the drift is allowed to have jump discontinuity when . Our proof is based on some estimates of Krylov’s type for purely discontinuous semimartingales.
Dans cet article nous prouvons l’existence et l’unicité d’équations différentielles stochastiques dans avec terme de dérive dépendant du temps dans un espace de Sobolev et dirigées par un processus de Lévy -stable symétrique avec et de mesure spectrale non-dégénérée. En particulier, le terme de dérive peut avoir des discontinuités de saut quand . Notre preuve est basée sur des estimations de type Krylov pour des semimartingales purement discontinues.
Keywords: pathwise uniqueness, symmetric $\alpha $-stable process, Krylov’s estimate, fractional Sobolev space
@article{AIHPB_2013__49_4_1057_0, author = {Zhang, Xicheng}, title = {Stochastic differential equations with {Sobolev} drifts and driven by $\alpha $-stable processes}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1057--1079}, publisher = {Gauthier-Villars}, volume = {49}, number = {4}, year = {2013}, doi = {10.1214/12-AIHP476}, mrnumber = {3127913}, zbl = {1279.60074}, language = {en}, url = {http://www.numdam.org/articles/10.1214/12-AIHP476/} }
TY - JOUR AU - Zhang, Xicheng TI - Stochastic differential equations with Sobolev drifts and driven by $\alpha $-stable processes JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2013 SP - 1057 EP - 1079 VL - 49 IS - 4 PB - Gauthier-Villars UR - http://www.numdam.org/articles/10.1214/12-AIHP476/ DO - 10.1214/12-AIHP476 LA - en ID - AIHPB_2013__49_4_1057_0 ER -
%0 Journal Article %A Zhang, Xicheng %T Stochastic differential equations with Sobolev drifts and driven by $\alpha $-stable processes %J Annales de l'I.H.P. Probabilités et statistiques %D 2013 %P 1057-1079 %V 49 %N 4 %I Gauthier-Villars %U http://www.numdam.org/articles/10.1214/12-AIHP476/ %R 10.1214/12-AIHP476 %G en %F AIHPB_2013__49_4_1057_0
Zhang, Xicheng. Stochastic differential equations with Sobolev drifts and driven by $\alpha $-stable processes. Annales de l'I.H.P. Probabilités et statistiques, Volume 49 (2013) no. 4, pp. 1057-1079. doi : 10.1214/12-AIHP476. http://www.numdam.org/articles/10.1214/12-AIHP476/
[1] Smoothness of indicator functions of some sets in Wiener spaces. J. Math. Pures Appl. 79 (2000) 515-523. | MR
and .[2] Stopping times and tightness. Ann. Probab. 6 (1978) 335-340. | MR
.[3] Lévy Processes and Stochastic Calculus. Cambridge Studies in Advance Mathematics 93. Cambridge Univ. Press, Cambridge, UK, 2004. | MR
.[4] Stochastic differential equations driven by symmetric stable processes. In Seminaire de Probabilities, XXXVI 302-313. Lecture Notes in Math. 1801. Springer, Berlin, 2003. | Numdam | MR
.[5] Stochastic differential equations with jumps. Probab. Surv. 1 (2004) 1-19. | MR
.[6] Estimates of heat kernel of fractional Laplacian perturbed by gradient operators. Comm. Math. Phys. 271 (2007) 179-198. | MR
and .[7] Dirichlet heat kernel estimates for fractional Laplacian with gradient perturbation. Available at http://arxiv.org/abs/1011.3273.
, and .[8] Estimates and regularity results for the DiPerna-Lions flow. J. Reine Angew. Math. 616 (2008) 15-46. | MR
and .[9] Pathwise uniqueness for a class of SDE in Hilbert spaces and applications. J. Funct. Anal. 259 (2010) 243-267. | MR
and .[10] Uniqueness of solutions of stochastic differential equations. Int. Math. Res. Not. IMRN (2007) Art. ID rnm124. | MR
.[11] Pathwise uniqueness and continuous dependence for SDEs with nonregular drift. Available at arXiv:1004.3485v1. | MR
and .[12] Well-posedness of the transport equation by stochastic perturbation. Invent. Math. 180 (2010) 1-53. | MR
, and .[13] On pathwise uniqueness for stochastic differential equations driven by stable Lévy processes. Available at http://arxiv.org/abs/1011.0532. | Numdam | MR
.[14] On stochastic differential equations with locally unbounded drift. Czechoslovak Math. J. 51 (2001) 763-783. | MR
and .[15] Semimartingale Theory and Stochastic Calculus. Science Press and CRC Press, Beijing, 1992. | MR
, and .[16] Controlled Diffusion Processes. Applications of Mathematics 14. Springer, New York, Berlin, 1980. Translated from the Russian by A. B. Aries. | MR
.[17] Strong solutions of stochastic equations with singular time dependent drift. Probab. Theory Related Fields 131 (2005) 154-196. | MR
and .[18] Stochastic equations with time-dependent drifts driven by Lévy processes. J. Theoret. Probab. 20 (2007) 859-869. | MR
.[19] A note on -estimates for stable integrals with drift. Trans. Amer. Math. Soc. 360 (2008) 925-938. | MR
.[20] Strong solutions for stochastic differential equations with jumps. Available at http://arxiv.org/abs/0910.0950. | MR
and .[21] Pathwise uniqueness for singular SDEs driven by stable processes. Available at http://arxiv.org/abs/1005.4237. | MR
.[22] Limit theorems for stochastic differential equations with discontinuous coefficients. SIAM J. Math. Anal. 43 (2011) 302-321. | MR
and .[23] Lévy Processes and Infinite Divisible Distributions. Cambridge Univ. Press, Cambridge, 1999. | MR
.[24] Singular Integrals and Differentiability Properties of Functions. Princeton Univ. Press, Princeton, NJ, 1970. | MR
.[25] Perturbation of drift-type for Lévy processes. J. Math. Kyoto Univ. 14 (1974) 73-92. | MR
, and .[26] Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam, 1978. | MR
.[27] On the strong solutions of stochastic differential equations. Theory Probab. Appl. 24 (1979) 354-366. | MR
.[28] Stochastic homeomorphism flows of SDEs with singular drifts and Sobolev diffusion coefficients. Electron. J. Probab. 16 (2011) 1096-1116. | MR
.[29] Well-posedness and large deviation for degenerate SDEs with Sobolev coefficients. Available at http://arxiv.org/abs/1002.4297. | MR
.[30] A transformation of the phase space of a diffusion process that removes the drift. Mat. Sb. 93 (1974) 129-149. | MR
.Cited by Sources: