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Abstract. In this article we prove the pathwise uniqueness for stochastic differential equations in R
d with time-dependent Sobolev

drifts, and driven by symmetric α-stable processes provided that α ∈ (1,2) and its spectral measure is non-degenerate. In particular,
the drift is allowed to have jump discontinuity when α ∈ ( 2d

d+1 ,2). Our proof is based on some estimates of Krylov’s type for purely
discontinuous semimartingales.

Résumé. Dans cet article nous prouvons l’existence et l’unicité d’équations différentielles stochastiques dans Rd avec terme de
dérive dépendant du temps dans un espace de Sobolev et dirigées par un processus de Lévy α-stable symétrique avec α ∈ (1,2) et
de mesure spectrale non-dégénérée.

En particulier, le terme de dérive peut avoir des discontinuités de saut quand α ∈ ( 2d
d+1 ,2). Notre preuve est basée sur des

estimations de type Krylov pour des semimartingales purement discontinues.
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1. Introduction and main result

Consider the following SDE driven by a symmetric α-stable process in R
d :

dXt = bt (Xt )dt + dLt , X0 = x, (1.1)

where b : R+ × R
d → R

d is a measurable function, (Lt )t≥0 is a d-dimensional symmetric α-stable process defined
on some filtered probability space (Ω,F ,P ; (Ft )t≥0). The aim of this paper is to study the pathwise uniqueness of
SDE (1.1) with b in fractional Sobolev spaces.

Let us first briefly recall some well-known results in this direction. When Lt is a standard d-dimensional Brow-
nian motion, Veretennikov [27] firstly proved the existence of a unique strong solution for SDE (1.1) with bounded
measurable b. In [17], Krylov and Röckner relaxed the boundedness assumptions on b to the following integrability
assumptions:

∫ T

0

(∫
Rd

∣∣bt (x)
∣∣p dx

)q/p

dt < +∞, ∀T > 0, (1.2)

provided that

d

p
+ 2

q
< 1. (1.3)
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Recently, in [28] we extended Krylov and Röckner’s result to the case of non-constant Sobolev diffusion coefficients
and meanwhile, obtained the stochastic homeomorphism flow property of solutions and the strong Feller property.
Other generalizations in various directions can be found in [9–12,14], etc.

In the case of symmetric α-stable processes, the pathwise uniqueness for SDE (1.1) with irregular drift is far from
being complete. When d = 1, α ∈ [1,2) and b is time-independent and bounded continuous, Tanaka, Tsuchiya and
Watanabe [25] proved the pathwise uniqueness of solutions to SDE (1.1). When d > 1, α ∈ [1,2), the spectral measure
of Lt is non-degenerate, and b is time-independent and bounded Hölder continuous, where the Hölder index β satisfies

β > 1 − α

2
,

Priola [21] recently proved the pathwise uniqueness and the stochastic homeomorphism flow property of solutions to
SDE (1.1). When d = 1, α ∈ (1,2) and b is only bounded measurable, Kurenok [18] obtained the existence of weak
solutions for SDE (1.1) by proving an estimate of Krylov’s type: for any T > 0,

E

∫ T

0
ft (Xt )dt ≤ C‖f ‖L2([0,T ]×R). (1.4)

When d > 1, α ∈ (1,2) and b is time-independent and belongs to some Kato’s class, Chen, Kim and Song [7], Theo-
rem 2.5, proved the existence of martingale solutions (equivalently weak solutions) in terms of Feller semigroup (cf.
[6]). On the other hand, there are many works devoted to the study of weak uniqueness (i.e., the well-posedness of
martingale problems) for SDEs with jumps. This is refereed to the survey paper of Bass [5]. Moreover, in the one di-
mensional case, the pathwise uniqueness for SDEs with Hölder continuous diffusion coefficients has been extensively
studied (see the recent works of Fournier [13] and Li and Mytnik [20]). However, to the author’s knowledge, there are
few results about the pathwise uniqueness for multidimensional SDE (1.1) with discontinuous drifts.

Before stating our main result, we recall some facts about symmetric α-stable processes. Let (Lt )t≥0 be a d-
dimensional symmetric α-stable process. By Lévy–Khinchin’s formula, its characteristic function is given by (cf.
[23])

Eei〈ξ,Lt 〉 = e−tψ(ξ),

where

ψ(ξ) =
∫

Rd

(
1 − ei〈ξ,x〉 + i〈ξ, x〉1|x|≤1

)
ν(dx),

and the Lévy measure ν with ν({0}) = 0 is given by

ν(U) =
∫

Sd−1

∫ +∞

0

1U(rθ)

rd+α
drμ(dθ), U ∈ B

(
R

d
)
, (1.5)

where B(Rd) is the Borel σ -field of Euclidean space R
d , μ is a symmetric finite measure on the unit sphere S

d−1 :=
{θ ∈ R

d : |θ | = 1}, called spectral measure of stable process Lt . By an elementary calculation, we have

ψ(ξ) =
∫

Rd

(
1 − cos 〈ξ, x〉)ν(dx) = cα

∫
Sd−1

∣∣〈ξ, θ〉∣∣αμ(dθ).

In particular, if μ is the uniform distribution on S
d−1, then ψ(ξ) = cα|ξ |α , here cα may be different. Throughout this

paper, we make the following assumption:

(Hα): For some α ∈ (0,2) and constant Cα > 0,

ψ(ξ) ≥ Cα|ξ |α, ξ ∈ R
d . (1.6)

We remark that the above condition is equivalent that the support of spectral measure μ is not contained in a proper
linear subspace of Rd (cf. [21], p. 4).
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We now introduce the class of local strong solutions for SDE (1.1). Let τ be any (Ft )-stopping time. For x ∈ Rd ,
let Sτ

b (x) be the class of all R
d -valued (Ft )-adapted càdlàg stochastic process Xt on [0, τ ) satisfying

P

{
ω:

∫ T

0

∣∣bs

(
Xs(ω)

)∣∣ds < +∞,∀T ∈ [
0, τ (ω)

)} = 1,

and such that

Xt = x +
∫ t

0
bs(Xs)ds + Lt , ∀t ∈ [0, τ ), a.s.

The main result of the present paper is:

Theorem 1.1. Assume that (Hα) holds with α ∈ (1,2), and b : R+ × R
d → R

d satisfies that for some β ∈ (1 − α
2 ,1),

p > 2d
α

and any T ,R > 0,

sup
t∈[0,T ]

∫
BR

∫
BR

|bt (x) − bt (y)|p
|x − y|d+βp

dx dy < +∞ (1.7)

and

sup
(t,x)∈[0,T ]×BR

∣∣bt (x)
∣∣ < +∞, (1.8)

where BR = {x ∈ R
d : |x| ≤ R}. Then, for any x ∈ R

d , there exists an (Ft )-stopping time ζ(x) (called explosion time)
and a unique strong solution Xt ∈ S

ζ(x)
b (x) to SDE (1.1) with

lim
t↑ζ(x)

Xt (x) = +∞ a.s. on
{
ζ(x) < +∞}

. (1.9)

Remark 1.2. Let O be a bounded smooth domain in R
d . It is well-known that for any β ∈ (0,1) and p ∈ (1, 1

β
) (cf.

[1]),

1O ∈ W
β
p, (1.10)

where W
β
p is the fractional Sobolev space defined by (2.3) below. Hence, if α ∈ ( 2d

d+1 ,2), then one can choose

β ∈
(

1 − α

2
,

α

2d

)
, p ∈

(
2d

α
,

1

β

)

so that Theorem 1.1 can be used to uniquely solve the following discontinuous SDE:

dXt = [
b(1)1O + b(2)1Oc

]
(Xt )dt + dLt , X0 = x,

where b(i), i = 1,2, are two bounded and locally Hölder continuous functions with Hölder index greater than β . In
one dimensional case, if α ∈ (1,2), it is well-known that regularity condition (1.7) can be dropped (cf. [25], p. 82,
Remark 1). The key point in this case is that the weak uniqueness is equivalent to the pathwise uniqueness. However,
in the case of d ≥ 2, it is still open that whether SDE (1.1) has a unique strong solution when b is only bounded
measurable.

For proving this theorem, as in [17,28,30], we mainly study the following partial integro-differential equation
(abbreviated as PIDE) by using some interpolation techniques:

∂tu = L0u + bi ∂iu + f, u0(x) = 0,
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where L0 is the generator of Lévy process (Lt )t≥0 given by

L0u(x) =
∫

Rd

(
u(x + z) − u(x) − 1|z|≤1z

i ∂iu(x)
)
ν(dz) = lim

ε↓0

∫
|z|>ε

(
u(x + z) − u(x)

)
ν(dz), (1.11)

where the second equality is due to the symmetry of ν. Here and below, we use the convention that the repeated index
will be summed automatically. However, we need to firstly extend Krylov’s estimate (1.4) to the multidimensional
case. As in [18], we shall investigate the following semi-linear PIDE:

∂tu = L0u + κ|∇u| + f, u0(x) = 0,

where κ > 0 and ∇ is the gradient operator with respect to the spatial variable x. We want to emphasize that Fourier’s
transform used in [18,19] seems only work for one-dimensional case.

Our method for studying the above two PIDEs is based on the semigroup argument. For this aim, we shall derive
some smoothing and asymptotic properties about the Markov semigroup associated with L0. In particular, the inter-
polation techniques will be used frequently. This will be done in Section 2. In Section 3, partly following Kurenok’s
idea, we shall prove two Krylov’s estimates for multidimensional purely discontinuous semimartingales. In Section 4,
we prove our main result by using a transformation to remove the drift as adopted in [12,21,30].

In the remainder of this paper, the letter C with or without subscripts will denote a positive constant whose value
may change in different occasions.

2. Preliminaries

For p ≥ 1, the norm in Lp-space Lp(Rd) is denoted by ‖ · ‖p . For β ≥ 0 and p ≥ 1, let H
β
p := (I − Δ)−β/2(Lp(Rd))

be the Bessel potential space with the norm

‖f ‖β,p := ∥∥(I − Δ)β/2f
∥∥

p
.

Notice that for β = m ∈ N, an equivalent norm of H
β
p is given by (cf. [26], p. 177)

‖f ‖m,p = ‖f ‖p + ∥∥∇mf
∥∥

p
.

By Sobolev’s embedding theorem, if β − d
p

> 0 is not an integer, then (cf. [26], p. 206, (16))

H
β
p ↪→ Cβ−d/p

(
R

d
)
, (2.1)

where for γ > 0, Cγ (Rd) is the usual Hölder space with the norm:

‖f ‖Cγ :=
[γ ]∑
k=0

sup
x∈Rd

∣∣∇kf (x)
∣∣ + sup

x �=y

|∇[γ ]f (x) − ∇[γ ]f (y)|
|x − y|γ−[γ ] ,

where [γ ] := max{m ∈ N ∪ {0}: m ≤ γ } is the integer part of γ .
Let A and B be an interpolation pair of Banach spaces. For θ ∈ [0,1], we use [A,B]θ to denote the complex

interpolation space between A and B (cf. [26]). We have the following relation (cf. [26], p. 185, (11)): for p > 1,
β1 �= β2 and θ ∈ (0,1),

[
H

β1
p ,H

β2
p

]
θ

= H
β1+θ(β2−β1)
p . (2.2)

On the other hand, for 0 < β �= integer, the fractional Sobolev space W
β
p is defined by (cf. [26], p. 190, (15))

‖f ‖∼
β,p := ‖f ‖p +

[β]∑
k=0

(∫
Rd

∫
Rd

|∇kf (x) − ∇kf (y)|p
|x − y|d+(β−[β])p dx dy

)1/p

< +∞. (2.3)
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For β = 0,1,2, . . . , we set W
β
p := H

β
p . The relation between H

β
p and W

β
p is given as follows (cf. [26], p. 180, (9)):

for any β > 0, ε ∈ (0, β) and p > 1,

H
β+ε
p ↪→ W

β
p ↪→ H

β−ε
p . (2.4)

We recall the following complex interpolation theorem (cf. [26], p. 59, Theorem (a)).

Theorem 2.1. Let Ai ⊂ Bi, i = 0,1, be Banach spaces. Let T :Ai → Bi, i = 0,1, be bounded linear operators. For
θ ∈ [0,1], we have

‖T ‖Aθ→Bθ ≤ ‖T ‖1−θ
A0→B0

‖T ‖θ
A1→B1

,

where Aθ := [A0,A1]θ , Bθ := [B0,B1]θ and ‖T ‖Aθ→Bθ denotes the operator norm of T mapping Aθ to Bθ .

Let f be a locally integrable function on Rd . The Hardy–Littlewood maximal function is defined by

Mf (x) := sup
0<r<∞

1

|Br |
∫

Br

∣∣f (x + y)
∣∣dy,

where Br := {x ∈ R
d : |x| < r}. The following well-known results can be found in [8,22,29] and [24], p. 5, Theorem 1.

Lemma 2.2. (i) For f ∈ W
1
1, there exists a constant Cd > 0 and a Lebesgue zero set E such that for all x, y /∈ E,

∣∣f (x) − f (y)
∣∣ ≤ Cd |x − y|(M|∇f |(x) + M|∇f |(y)

)
. (2.5)

(ii) For p > 1, there exists a constant Cd,p > 0 such that for all f ∈ Lp(Rd),

‖Mf ‖p ≤ Cd,p‖f ‖p. (2.6)

For fixed z ∈ R
d , define the shift operator

Tzf (x) := f (x + z) − f (x).

We have the following useful estimate.

Lemma 2.3. For p > 1 and γ ∈ [1,2], there exists a constant C = C(p,γ, d) > 0 such that for any f ∈ H
γ
p ,

‖Tzf ‖1,p ≤ C|z|γ−1‖f ‖γ,p. (2.7)

Proof. By (2.5), we have for Lebesgue almost all x ∈ R
d ,

∣∣Tzf (x)
∣∣ ≤ C|z|(M|∇f |(x + z) + M|∇f |(x)

)
,

and so, by (2.6),

‖Tzf ‖p ≤ C|z| · ∥∥M|∇f |∥∥
p

≤ C|z| · ‖∇f ‖p ≤ C|z| · ‖f ‖1,p.

On the other hand, it is clear that for any β > 0,

‖Tzf ‖β,p ≤ 2‖f ‖β,p.

By Theorem 2.1 and (2.2), for θ ∈ (0,1), we immediately have

‖Tzf ‖θβ,p ≤ C|z|1−θ‖f ‖1+θ(β−1),p,
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which gives the desired result by letting θ = 2 − γ and β = 1
2−γ

. �

We now recall the following well-known properties about the symmetric α-stable process (Lt )t≥0 (cf. [23], Theo-
rem 25.3, and [21], Lemma 3.1).

Proposition 2.4. Let μt be the law of α-stable process Lt .

(i) Scaling property: For any λ > 0, (Lt )t≥0 and (λ−1/αLλt )t≥0 have the same finite dimensional law. In particular,
for any t > 0 and A ∈ B(Rd), μt(A) = μ1(t

−1/αA).
(ii) Existence of smooth density: For any t > 0, μt has a smooth density pt with respect to the Lebesgue measure,

which is given by

pt (x) = 1

(2π)d

∫
Rd

e−i〈x,ξ〉e−tψ(ξ) dξ.

Moreover, pt(x) = pt(−x) and for any k ∈ N, ∇kpt ∈ L1(Rd).
(iii) Moments: For any t > 0, if β < α, then E|Lt |β < +∞; if β ≥ α, then E|Lt |β = ∞.

The Markov semigroup associated with the Lévy process (Lt )t≥0 is given by

Tt f (x) = E
(
f (Lt + x)

) =
∫

Rd

pt (z − x)f (z)dz =
∫

Rd

pt (x − z)f (z)dz. (2.8)

We have:

Lemma 2.5. (i) For any α ∈ (0,2), p > 1 and β,γ ≥ 0, we have for all f ∈ H
β
p ,

‖Tt f ‖β+γ,p ≤ Ct−γ /α‖f ‖β,p. (2.9)

(ii) For any α ∈ (1,2), θ ∈ [0,1] and p > 1, there exists a constant C = C(d,p, θ) > 0 such that for all f ∈ H
θ
p ,

‖Tt f − f ‖p ≤ Ctθ/α‖f ‖θ,p. (2.10)

Proof. (i) Let f ∈ C∞
0 (Rd). For any k,m ∈ N, by the scaling property, we have

∇k+mTt f (x) = t−(d+k)/α

∫
Rd

(∇kp1
)(

t−1/α(x − z)
)∇mf (z)dz.

Hence,

∥∥∇k+mTt f
∥∥

p
≤ t−k/α

∥∥∇mf
∥∥

p

∫
Rd

∣∣∇kp1
∣∣(x)dx.

Since C∞
0 (Rd) is dense in H

m
p , we further have for any f ∈ H

m
p ,

∥∥∇k+mTt f
∥∥

p
≤ t−k/α‖f ‖m,p

∫
Rd

∣∣∇kp1
∣∣(x)dx.

On the other hand, it is clear that

‖Tt f ‖p ≤ ‖f ‖p.

By Theorem 2.1, we obtain (2.9).
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(ii) First, we assume that f ∈ H1
p . By (2.5), we have for Lebesgue almost all x ∈ Rd ,

∣∣Tt f (x) − f (x)
∣∣ ≤

∫
Rd

∣∣f (x + y) − f (x)
∣∣ · pt(y)dy

≤ C

∫
Rd

(
M|∇f |(x + y) + M|∇f |(x)

) · |y| · pt(y)dy,

and so, by (2.6) and the scaling property,

‖Tt f − f ‖p ≤ C
∥∥M|∇f |∥∥

p

∫
Rd

|y| · pt(y)dy ≤ C‖∇f ‖pE|Lt | = Ct1/α‖∇f ‖pE|L1|.

Estimate (2.10) follows by (iii) of Proposition 2.4 and Theorem 2.1 again. �

We also need the following simple result for proving the uniqueness.

Lemma 2.6. Let (Zt )t≥0 be a locally bounded and (Ft )-adapted process and (At )t≥0 a continuous real valued non-
decreasing (Ft )-adapted process with A0 = 0. Assume that for any stopping time η and t ≥ 0,

E|Zt∧η| ≤ E

∫ t∧η

0
|Zs |dAs.

Then Zt = 0 a.s. for all t ≥ 0.

Proof. By replacing At by At + t , one may assume that t �→ At is strictly increasing. For t ≥ 0, define the stopping
time

τt := inf{s ≥ 0: As ≥ t}.
It is clear that τt is the inverse of t �→ At . Fix T > 0. By the assumption and the change of variables, we have

E|ZT ∧τt | ≤ E

∫ T ∧τt

0
|Zs |dAs ≤ E

∫ τt

0
|ZT ∧s |dAs =

∫ t

0
E|ZT ∧τs |ds.

By Gronwall’s lemma, we obtain ZT ∧τt = 0. Letting t → ∞ gives the conclusion. �

3. Krylov’s estimates for purely discontinuous semimartingales

Let (Lt )t≥0 be a symmetric α-stable process. The associated Poisson random measure is defined by

N
(
(0, t] × U

) :=
∑

s∈(0,t]
1U(Ls − Ls−), U ∈ B

(
R

d \ {0}), t > 0.

The compensated Poisson random measure is given by Ñ((0, t] × U) = N((0, t] × U) − tν(U). By Lévy–Itô’s de-
composition, one may write (cf. [23])

Lt =
∫ t

0

∫
|x|≤1

xÑ(ds,dx) +
∫ t

0

∫
|x|>1

xN(ds,dx). (3.1)

Let Xt a purely discontinuous semimartingale with the form

Xt = X0 +
∫ t

0
ξs ds + Lt , (3.2)
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where X0 ∈ F0 and (ξt )t≥0 is a measurable and (Ft )-adapted Rd -valued process. Let u be a bounded smooth function
on R+ × R

d . By Itô’s formula (cf. [3]), we have

ut (Xt ) = u0(X0) +
∫ t

0

([∂sus + L0us](Xs) + ξ i
s ∂ius(Xs)

)
ds

+
∫ t

0

∫
Rd\{0}

[
us(Xs− + y) − us(Xs−)

]
Ñ(ds,dy).

In this section, we prove two estimates of Krylov’s type for the above Xt . Let us first prove the following simple
Krylov’s estimate, which will be used in Section 4 to prove the existence of weak solutions for SDE (1.1) with singular
drift b.

Theorem 3.1. Suppose that α ∈ (1,2), p > d
α−1 and q >

pα
p(α−1)−d

. Then, for any T0 > 0, there exist a constant C =
C(T0, d,α,p, q) > 0 such that for any (Ft )-stopping time τ , and 0 ≤ S ≤ T ≤ T0, and all f ∈ Lq([S,T ];Lp(Rd)),

E

(∫ T ∧τ

S∧τ

fs(Xs)ds

∣∣∣FS

)
≤ C

(
1 + E

(∫ T ∧τ

S∧τ

|ξs |ds

∣∣∣FS

))
‖f ‖Lq([S,T ];Lp(Rd )). (3.3)

Proof. Let us first assume that f ∈ C∞
0 (R+ × R

d) and define

ut (x) =
∫ t

0
Tt−sfs(x)ds,

where Tt is defined by (2.8). By Lemma 2.5, it is easy to see that ut (x) ∈ C∞(R+ × R
d) and solves the following

PIDE:

∂tut (x) = L0ut (x) + ft (x).

Choosing γ ∈ (1 + d
p
,α − α

q
), by (2.9) and Hölder’s inequality, we have

‖ut‖γ,p ≤
∫ t

0
‖Tt−sfs‖γ,p ds ≤ C

∫ t

0
(t − s)−γ /α‖fs‖p ds

≤ C

(∫ t

0
(t − s)−q∗γ /α ds

)1/q∗

‖f ‖Lq(R+;Lp) ≤ C‖f ‖Lq(R+;Lp), (3.4)

where q∗ = q/(q − 1).
Fix T0 > 0 and an (Ft )-stopping time τ . Using Itô’s formula for uT0−t (Xt ) and by Doob’s optimal theorem, we

have

E
(
uT0−T ∧τ (XT ∧τ )|FS

) − uT0−S∧τ (XS∧τ )

= E

(∫ T ∧τ

S∧τ

([∂suT0−s + L0uT0−s](Xs) + ξ i
s ∂iuT0−s(Xs)

)
ds

∣∣∣FS

)

≤ E

(∫ T ∧τ

S∧τ

(−fs(Xs) + |ξs | · |∇uT0−s |(Xs)
)

ds

∣∣∣FS

)
,

which yields by (3.4) and (2.1) that

E

(∫ T ∧τ

S∧τ

fs(Xs)ds

∣∣∣FS

)
≤ 2 sup

s,x

∣∣us(x)
∣∣ + sup

s,x
|∇us |(x) · E

(∫ T ∧τ

S∧τ

|ξs |ds

∣∣∣FS

)

≤ C‖f ‖Lq(R+;Lp)

(
1 + E

(∫ T ∧τ

S∧τ

|ξs |ds

∣∣∣FS

))
,
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where we have used p(γ − 1) > d . By a standard density argument, we obtain (3.3) for general f ∈ Lq([0, T ];
Lp(Rd)). �

In one-dimensional case, as in [19], we even have:

Theorem 3.2. Let Xt take the following form:

Xt = X0 +
∫ t

0
ξs ds +

∫ t

0
hs dLs,

where hs is a bounded predictable process. Suppose that α ∈ (1,2) and p > 1
α−1 . Then, for any T0 > 0, there exist a

constant C = C(T0, α,p, q) > 0 such that for any (Ft )-stopping time τ , and 0 ≤ S ≤ T ≤ T0, and all f ∈ Lp(Rd),

E

(∫ T ∧τ

S∧τ

|hs |αf (Xs)ds

∣∣∣FS

)
≤ C

(
1 + E

(∫ T ∧τ

S∧τ

(|ξs | + |hs |α
)

ds

∣∣∣FS

))
‖f ‖p. (3.5)

Proof. Fix T0 > 0. For f ∈ C∞
0 (Rd), let us define

uT0(x) :=
∫ T0

0
TT0−sf (x)ds.

It is easy to see that

L0uT0(x) = TT0f (x) − f (x). (3.6)

Using Itô’s formula for uT0(Xt ) (cf. [4], Proposition 2.1), one finds that

E
(
uT0(XT ∧τ )|FS

) = uT0(XS∧τ ) + E

(∫ T ∧τ

S∧τ

(|hs |α L0uT0(Xs) + ξsu
′
T0

(Xs)
)

ds

∣∣∣FS

)
,

which together with (3.6) yields that

(∫ T ∧τ

S∧τ

|hs |αf (Xs)ds

∣∣∣FS

)
≤ 2‖uT0‖∞ + ∥∥u′

T0

∥∥∞E

(∫ T ∧τ

S∧τ

ξs ds

∣∣∣FS

)
+ ‖TT0f ‖∞E

(∫ T ∧τ

S∧τ

|hs |α ds

∣∣∣FS

)

≤ C

(
1 + E

(∫ T ∧τ

S∧τ

(|ξs | + |hs |α
)

ds

∣∣∣FS

))
‖f ‖p,

where we have used p(α − 1) > d , (2.9) and (2.1). By a standard density argument, we obtain (3.5) for general
f ∈ Lp(Rd). �

In the above two theorems, the requirement of p > d
α−1 is too strong to prove Theorem 1.1. It is clear that this

is caused by directly controlling the ∞-norm of ∇us(x) by Sobolev embedding theorem. In what follows, we shall
relax it to p > d

α
. The price to pay is that we need to assume that ξt is a bounded (Ft )-adapted process. Nevertheless,

Theorem 3.1 can be used to prove the existence of weak solutions for SDE (1.1) with globally integrable drift.
We now start by solving the following semi-linear PIDE:

∂tu = L0u + κ|∇u| + f, u0 ≡ 0, t ≥ 0, (3.7)

where κ > 0, L0 is the generator of Lévy process (Lt )t≥0 given by (1.11), and f is a locally integrable function on
R+ × R

d .
We first give the following definition of generalized solutions to PIDE (3.7).
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Definition 3.3. For p ≥ 1, a function u ∈ C([0,∞);H1
p) is called a generalized solution of (3.7), if for all test function

ϕ ∈ C∞
0 ([0,∞) × Rd), it holds that

−
∫ ∞

0

∫
Rd

u ∂tϕ =
∫ ∞

0

∫
Rd

uL∗
0ϕ +

∫ ∞

0

∫
Rd

(
κ|∇u| + f

)
ϕ,

where L∗
0 is the adjoint operator of L0 given by

L∗
0ϕ(x) =

∫
Rd

(
ϕ(x − z) − ϕ(x) + 1|z|≤1z

i ∂iϕ(x)
)
ν(dz).

Remark 3.4. If we extend u and f to R by setting ut = ft ≡ 0 for t ≤ 0, then for all ϕ ∈ C∞
0 (Rd+1),

−
∫

Rd+1
u∂tϕ =

∫
Rd+1

uL∗
0ϕ +

∫
Rd+1

(
κ|∇u| + f

)
ϕ.

Since the Lévy measure ν is symmetric, L∗
0 is in fact the same as L0.

The following proposition is now standard. For the reader’s convenience, a proof is provided here.

Proposition 3.5. For p ≥ 1, let u ∈ C([0,∞);H
1
p) and f ∈ L1

loc([0,∞);Lp(Rd)). The following three statements
are equivalent:

(i) u is a generalized solution of (3.7).
(ii) For any φ ∈ C∞

b (Rd), it holds that for all t ≥ 0,

∫
Rd

utφ =
∫ t

0

∫
Rd

us L∗
0φ +

∫ t

0

∫
Rd

(
κ|∇us | + fs

)
φ.

(iii) u satisfies the following integral equation:

ut (x) =
∫ t

0
Tt−s

(
κ|∇us | + fs

)
(x)ds, ∀t ≥ 0.

Proof. For simplicity of notation, we write Fs(x) := κ|∇us | + fs . By the assumptions, we have

F ∈ L1
loc

([0,∞);Lp
(
R

d
))

.

(i) ⇒ (ii). Let φ ∈ C∞
b (Rd). Let ρ ∈ C∞

0 (R) with support in [0,1] and
∫ 1

0 ρ(r)dr = 1. Fix t > 0 and define for
ε > 0,

χε(s) :=
∫ ∞

(s−t)/ε

ρ(r)dr.

It is easy to see that χε ∈ C∞
0 ([0,∞)) converges to 1[0,t] for any s ≥ 0. Let ζR(x) ∈ C∞

0 (Rd) converge to 1 point-
wisely. Taking ϕs(x) := χε(s)ζR(x)φ(x) in the definition of generalized solutions, we have

ε−1
∫ ∞

0

∫
Rd

uρ
(
(· − t)/ε

)
ζRφ =

∫ ∞

0

∫
Rd

χεuL∗
0(ζRφ) +

∫ ∞

0

∫
Rd

FχεζRφ.

Letting ε → 0 and R → ∞ and using the dominated convergence theorem, we immediately have (ii).
(ii) ⇒ (i) and (iii). Fix t > 0. By the chain rule, one sees that for any h ∈ C1([0, t]),

∫
Rd

uthtφ =
∫ t

0

∫
Rd

ush
′
sφ +

∫ t

0

∫
Rd

ushs L∗
0φ +

∫ t

0

∫
Rd

Fshsφ.
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By the linearity and a density argument, we obtain (i) and also have for all ϕ ∈ C1([0, t];C∞
b (Rd)),

∫
Rd

utϕt =
∫ t

0

∫
Rd

us ∂sϕs +
∫ t

0

∫
Rd

us L∗
0ϕs +

∫ t

0

∫
Rd

Fsϕs.

Now for any φ ∈ C∞
b (Rd), taking ϕs(x) = Tt−sφ(x) ∈ C1([0, t];C∞

b (Rd)) in the above equality, we obtain

∫
Rd

utφ = −
∫ t

0

∫
Rd

us L0ϕs +
∫ t

0

∫
Rd

us L∗
0ϕs +

∫ t

0

∫
Rd

Fs Tt−sφ =
∫ t

0

∫
Rd

Tt−sFsφ,

where we have used the symmetry of Tt . Thus, (iii) follows by the arbitrariness of φ.
(iii) ⇒ (ii). By Fubini’s theorem, we have

∫ t

0

∫
Rd

us L∗
0φ ds =

∫ t

0

∫
Rd

(∫ s

0
Ts−rFr dr

)
L∗

0φ ds =
∫ t

0

∫
Rd

(∫ t

r

L∗
0 Ts−rφ ds

)
Fr dr

=
∫ t

0

∫
Rd

(Tt−rφ − φ)Fr dr =
∫

Rd

utφ −
∫ t

0

∫
Rd

Frφ dr.

(ii) now follows. �

We have the following existence-uniqueness result about the generalized solution of Eq. (3.7).

Theorem 3.6. For p > 1, α ∈ (1,2), γ ∈ [1, α) and q > α
α−γ

, assume that f ∈ L
q

loc(R+;Lp(Rd)). Then, there exists

a unique generalized solution u ∈ C([0,∞);H
γ
p) to PIDE (3.7). Moreover,

‖ut‖γ,p ≤ Ct‖f ‖Lq([0,t];Lp), ∀t ≥ 0, (3.8)

where Ct ≥ 0 is a continuous increasing function of t with Ct = O(t1−γ /α−1/q) as t → 0.

Proof. Let u(0) ≡ 0. For n ∈ N, define u(n) recursively by

u
(n)
t (x) =

∫ t

0
Tt−s

(
κ
∣∣∇u(n−1)

s

∣∣ + fs

)
(x)ds, ∀t ≥ 0. (3.9)

By (i) of Lemma 2.5 and Hölder’s inequality, we have for q > α
α−γ

,

∥∥u
(n)
t

∥∥
γ,p

≤ C

∫ t

0
(t − s)−γ /α

(
κ
∥∥∇u(n−1)

s

∥∥
p

+ ‖fs‖p

)
ds

≤ C

(∫ t

0
(t − s)−qγ /((q−1)α) ds

)(q−1)/q(∫ t

0

(
κq

∥∥∇u(n−1)
s

∥∥q

p
+ ‖fs‖q

p

)
ds

)1/q

,

which yields that

∥∥u
(n)
t

∥∥q

γ,p
≤ Ct(q(α−γ )−α)/α

(∫ t

0

∥∥u(n−1)
s

∥∥q

1,p
ds +

∫ t

0
‖fs‖q

p ds

)

≤ Ct(q(α−γ )−α)/α

(∫ t

0

∥∥u(n−1)
s

∥∥q

γ,p
ds +

∫ t

0
‖fs‖q

p ds

)
.

By Gronwall’s inequality, we obtain that for all t ≥ 0,

sup
n∈N

∥∥u
(n)
t

∥∥q

γ,p
≤ Ct

∫ t

0
‖fs‖q

p ds. (3.10)
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Next, fixing T > 0, we want to prove the Hölder continuity of mapping [0, T ] � t �→ u
(n)
t ∈ H

γ
p . For T ≥ t > t ′ ≥ 0,

we have

u
(n)
t − u

(n)

t ′ =
∫ t ′

0
(Tt−s − Tt ′−s)

(
κ
∣∣∇u(n−1)

s

∣∣ + fs

)
ds +

∫ t

t ′
Tt−s

(
κ
∣∣∇u(n−1)

s

∣∣ + fs

)
ds =: I1

(
t, t ′

) + I2
(
t, t ′

)
.

For I1(t, t
′), using the semigroup property of Tt , we further have

I1
(
t, t ′

) =
∫ t ′

0
T(t ′−s)/2(Tt−t ′ − I )T(t ′−s)/2

(
κ
∣∣∇u(n−1)

s

∣∣ + fs

)
ds.

Hence, by Lemma 2.5, (3.10) and Hölder’s inequality again, for δ ∈ (0, α − γ − α
q
), we have

∥∥I1
(
t, t ′

)∥∥
γ,p

≤ C

∫ t ′

0

(
t ′ − s

)−γ /α∥∥(Tt−t ′ − I )T(t ′−s)/2
(
κ
∣∣∇u(n−1)

s

∣∣ + fs

)∥∥
p

ds

≤ C

∫ t ′

0

(
t ′ − s

)−γ /α(
t − t ′

)δ/α‖T(t ′−s)/2
(
κ
∣∣∇u(n−1)

s

∣∣ + fs

)‖δ,p ds

≤ C
(
t − t ′

)δ/α
∫ t ′

0

(
t ′ − s

)−(γ+δ)/α(∥∥∇u(n−1)
s

∥∥
p

+ ‖fs‖p

)
ds

≤ C
(
t − t ′

)δ/α
(∫ t ′

0

(
t ′ − s

)((−γ+δ)/α)(q/(q−1)) ds

)1−1/q(∫ t ′

0

(∥∥∇u(n−1)
s

∥∥q

p
+ ‖fs‖q

p

)
ds

)1/q

≤ C
(
t − t ′

)δ/α‖f ‖Lq([0,T ];Lp(Rd )). (3.11)

For I2(t, t
′), we similarly have

∥∥I2
(
t, t ′

)∥∥
γ,p

≤ C

∫ t

t ′
(t − s)−γ /α

(∥∥∇u(n−1)
s

∥∥
p

+ ‖fs‖p

)
ds

≤ C

(∫ t

t ′
(t − s)(−γ /α)(q/(q−1)) ds

)1−1/q(∫ t

t ′

(∥∥∇u(n−1)
s

∥∥q

p
+ ‖fs‖q

p

)
ds

)1/q

≤ CT

(
t − t ′

)1−γ /α−1/q‖f ‖Lq([0,T ];Lp). (3.12)

Combining (3.11) and (3.12), we obtain the desired Hölder continuity.
Now, as (3.12), we can make the following estimation:

∥∥u
(n)
t − u

(m)
t

∥∥
γ,p

≤ C

∫ t

0
(t − s)−γ /α

(∥∥∣∣∇u(n−1)
s

∣∣ − ∣∣∇u(m−1)
s

∣∣∥∥
p

)
ds

≤ Ct1−γ /α−1/q

(∫ t

0

∥∥∇(
u(n−1)

s − u(m−1)
s

)∥∥q

p
ds

)1/q

,

which then gives that

∥∥u
(n)
t − u

(m)
t

∥∥q

γ,p
≤ Ct(q(α−γ )−α)/α

∫ t

0

∥∥u(n−1)
s − u(m−1)

s

∥∥q

γ,p
ds,

where C is independent of n,m and t . Using (3.10) and Fatou’s lemma, we find that

lim
n,m→∞ sup

s∈[0,t]

∥∥u(n)
s − u(m)

s

∥∥q

γ,p
≤ Ct(q(α−γ )−α)/α

∫ t

0
lim

n,m→∞
∥∥u(n−1)

s − u(m−1)
s

∥∥q

γ,p
ds

≤ Ct(q(α−γ )−α)/α

∫ t

0
lim

n,m→∞ sup
r∈[0,s]

∥∥u(n−1)
r − u(m−1)

r

∥∥q

γ,p
ds,
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and so, for any t > 0,

lim
n,m→∞ sup

s∈[0,t]
∥∥u(n)

s − u(m)
s

∥∥q

γ,p
= 0.

Thus, there exists a u ∈ C([0,∞);H
γ
p) such that for any t > 0,

lim
n→∞ sup

s∈[0,t]
∥∥u(n)

s − us

∥∥
γ,p

= 0.

Taking limits for both sides of (3.9), we obtain the existence of a generalized solution, and (3.8) is direct from (3.10).
As for the uniqueness, it follows from a similar calculation. The proof is complete. �

Let us now prove our second Krylov’s estimate.

Theorem 3.7. Suppose that α ∈ (1,2), p > d
α

∨ 1 and q >
pα

pα−d
. Let (ξt )t≥0 be a measurable and (Ft )-adapted

process bounded by κ , and let Xt have the form (3.2). Fix an (Ft )-stopping time τ . Then for any T0 > 0, there
exist a constant C = C(T0, κ, d,α,p, q) > 0 such that any (Ft )-stopping time τ , and 0 ≤ S ≤ T ≤ T0, and all f ∈
Lq([S,T ];Lp(Rd)),

E

(∫ T ∧τ

S∧τ

fs(Xs)ds

∣∣∣FS

)
≤ C‖f ‖Lq([S,T ];Lp(Rd )). (3.13)

Proof. Let us first assume that f ∈ C∞
0 (R+ × R

d). Choose γ ∈ ( d
p
,α − α

q
). Let u ∈ C([0,∞);H

γ
p) be the unique

solution of PIDE (3.7). Fix T0 > 0, and let vt (x) = uT0−t (x). It is easy to see that vt is a generalized solution of the
following PIDE:

∂tv + L0v + κ|∇v| + f = 0, vT0 ≡ 0. (3.14)

Let ρ be a smooth non-negative function in R
d+1 with support in {(s, x) ∈ R

d+1: |s| + |x| ≤ 1} and
∫

Rd+1 ρ = 1. For
ε > 0, set

ρε(s, x) = ε−(d+1)ρ
(
ε−1s, ε−1x

)

and

v(ε) = v ∗ ρε, f (ε) = f ∗ ρε.

Taking convolutions for both sides of (3.14), we obtain

∂tv
(ε) + L0v

(ε) + κ
∣∣∇v(ε)

∣∣ + f (ε) ≤ (
∂tv + L0v + κ|∇v| + f

) ∗ ρε = 0.

Here we have used Remark 3.4.
Using Itô’s formula for v

(ε)
t (Xt ), we get

E
(
v

(ε)
T ∧τ (XT ∧τ )|FS

) − v
(ε)
S∧τ (XS∧τ ) = E

(∫ T ∧τ

S∧τ

([
∂sv

(ε)
s + L0v

(ε)
s

]
(Xs) + ξ i

s ∂iv
(ε)
s (Xs)

)
ds

∣∣∣FS

)

≤ E

(∫ T ∧τ

S∧τ

[
∂sv

(ε)
s + L0v

(ε)
s + κ

∣∣∇v(ε)
s

∣∣](Xs)ds

∣∣∣FS

)

≤ −E

(∫ T ∧τ

S∧τ

f (ε)
s (Xs)ds

∣∣∣FS

)
,
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which yields by (3.8) and (2.1) that

E

(∫ T ∧τ

S∧τ

f (ε)
s (Xs)ds

∣∣∣FS

)
≤ 2 sup

(s,x)∈[0,T0]×Rd

∣∣v(ε)
s (x)

∣∣ ≤ 2 sup
(t,x)∈[0,T0]×Rd

∣∣vt (x)
∣∣

≤ 2 sup
(t,x)∈[0,T0]×Rd

∣∣ut (x)
∣∣ ≤ C‖f ‖Lq([0,T0];Lp).

Taking limits ε → 0, by the dominated convergence theorem, we have

E

(∫ T ∧τ

S∧τ

fs(Xs)ds

∣∣∣FS

)
≤ C‖f ‖Lq([0,T0];Lp).

By a standard density argument, we obtain (3.13) for general f ∈ Lq([S,T ];Lp(Rd)). �

4. Weak solutions for SDE (1.1) with globally integrable drift

In this section, we use Theorem 3.1 to prove the following existence of weak solutions for SDE (1.1).

Theorem 4.1. Suppose that α ∈ (1,2), γ ∈ (1, α), p > d
γ−1 and q > α

α−γ
. Then for any b ∈ L∞

loc(R+;L∞(Rd)) +
L

q

loc(R+;Lp(Rd)) and x0 ∈ R
d , there exists a weak solution to SDE (1.1). More precisely, there exists a probability

space (Ω̃, F̃ , P̃ ) and two càdlàg stochastic processes X̃t and L̃t defined on it such that L̃t is a symmetric α-stable

process with respect to the completed filtration F̃t := σ P̃ {X̃s, L̃s, s ≤ t} and

X̃t = x0 +
∫ t

0
b(s, X̃s)ds + L̃t , ∀t ≥ 0.

Proof. Our proof is adapted from the proof of [16], p. 87, Theorem 1. Let b = b1 + b2 with b1 ∈ L∞
loc(R+;L∞(Rd))

and b2 ∈ L
q

loc(R+;Lp(Rd)). Let b
(n)
i (t, x) = (bi(t, ·) ∗ ρn)(x) be the mollifying approximation of bi , i = 1,2. It is

easy to see that for some �
(n)
t ∈ L1

loc(R+),

∣∣b(n)(t, x) − b(n)(t, y)
∣∣ ≤ �

(n)
t |x − y|, ∀x, y ∈ R

d .

Thus, the following SDE can be uniquely solved and the solution is denoted by X
(n)
t ,

X
(n)
t = x0 +

∫ t

0
b(n)

(
s,X(n)

s

)
ds + Lt .

Claim 1: For some δ > 1, we have

sup
n∈N

E

∫ T

0

∣∣b(n)
(
s,X(n)

s

)∣∣δ ds < +∞, ∀T > 0. (4.1)

In fact, choosing δ > 1 and p′ ∈ ( d
γ−1 ,p), q ′ ∈ ( α

α−γ
, q) such that p′δ = p and q ′δ = q , by (3.3) and Young’s inequal-

ity, we have

E

∫ T

0

∣∣b(n)
2

(
s,X(n)

s

)∣∣δ ds ≤ CT

(
1 + E

∫ T

0

∣∣b(n)
(
s,X(n)

s

)∣∣ds

)∥∥∣∣b(n)
2

∣∣δ∥∥
Lq′

([0,T ];Lp′
(Rd ))

≤ CT

(
1 + ‖b1‖L∞([0,T ]×Rd ) + E

∫ T

0

∣∣b(n)
2

(
s,X(n)

s

)∣∣ds

)
‖b2‖δ

Lq([0,T ];Lp(Rd ))
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≤ 1

2
E

∫ T

0

∣∣b(n)
2

(
s,X(n)

s

)∣∣δ ds + CT ‖b2‖δ2/(δ−1)

Lq([0,T ];Lp(Rd ))

+ CT

(
1 + ‖b1‖L∞([0,T ]×Rd )

)‖b2‖δ
Lq([0,T ];Lp(Rd ))

,

which then implies (4.1).
Let D be the space of all càdlàg functions from R+ to R

d , which is endowed with the Skorohod topology so that
D is a Polish space. Set

H
(n)
t :=

∫ t

0
b(n)

(
s,X(n)

s

)
ds.

Using Claim 1, it is easy to check that the following Aldous’ tightness criterions [2] (see also [15], Theorem 15.55)
hold:

lim
N→∞ lim

n→∞P
(

sup
t∈[0,T ]

∣∣H(n)
t

∣∣ ≥ N
)

= 0, ∀T > 0,

and

lim
ε→0

lim
n→∞ sup

τ∈ST

P
(∣∣H(n)

τ − H
(n)
τ+ε

∣∣ ≥ a
) = 0, ∀T ,a > 0,

where ST denotes all the bounded stopping times with bound T . Thus, the law of t �→ H
(n)
t in D is tight, and so does

(H
(n)· ,L·). By Prohorov’s theorem, there exists a subsequence still denoted by n such that the law of (H

(n)· ,L·) in D×
D weakly converges, which then implies that the law of (X

(n)· ,L·) weakly converges. By Skorohod’s representation
theorem, there is a probability space (Ω̃, F̃ , P̃ ) and the D × D-valued random variables (X̃

(n)· , L̃
(n)· ) and (X̃·, L̃·)

such that

(i) (X̃
(n)· , L̃

(n)· ) has the same law as (X
(n)· ,L·) in D × D.

(ii) (X̃
(n)· , L̃

(n)· ) converges to (X̃·, L̃·), P̃ -almost surely.

In particular, L̃ is still a symmetric α-stable process and

X̃
(n)
t = x0 +

∫ t

0
b(n)

(
s, X̃(n)

s

)
ds + L̃

(n)
t .

Claim 2: For any non-negative measurable function f and T > 0, we have

Ẽ

∫ T

0
fs(X̃s)ds ≤ CT ‖f ‖Lq([0,T ];Lp(Rd )),

where Ẽ denotes the expectation with respect to the probability measure P̃ .
Let f ∈ C0([0, T ] × R

d). By the dominated convergence theorem, we have

Ẽ

∫ T

0
fs(X̃s)ds = lim

n→∞ Ẽ

∫ T

0
fs

(
X̃(n)

s

)
ds = lim

n→∞ E

∫ T

0
fs

(
X(n)

s

)
ds ≤ C‖f ‖Lq([0,T ];Lp(Rd )),

where in the last step we have used (3.3) and (4.1). For general f , it follows by the monotone class theorem.
The proof will be finished if one can show the following claim:
Claim 3: For any T > 0, we have

lim
n→∞ Ẽ

(∫ T

0

∣∣b(n)
i

(
s, X̃(n)

s

) − bi(s, X̃s)
∣∣ds

)
= 0, i = 1,2. (4.2)
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Let χR(x) be a smooth non-negative function on Rd with χR(x) = 1 for |x| ≤ R and χR(x) = 0 for |x| > R + 1. Then
for any n,m ∈ N,

Ẽ

(∫ T

0

∣∣b(n)
1

(
s, X̃(n)

s

) − b1(s, X̃s)
∣∣ds

)
≤ Ẽ

(∫ T

0

∣∣b(n)
1

(
s, X̃(n)

s

) − b
(m)
1

(
s, X̃(n)

s

)∣∣ds

)

+ Ẽ

(∫ T

0

∣∣b(m)
1

(
s, X̃(n)

s

) − b
(m)
1 (s, X̃s)

∣∣ds

)

+ Ẽ

(∫ T

0

∣∣b(m)
1 (s, X̃s) − b1(s, X̃s)

∣∣ds

)

= : I (n,m)
1 + I

(n,m)
2 + I

(n,m)
3 . (4.3)

For fixed m, by the above (ii) and the dominated convergence theorem, we have

lim
n→∞ I

(n,m)
2 = 0.

For I
(n,m)
1 , by Claim 1, we have

I
(n,m)
1 ≤ ‖b1‖L∞([0,T ];L∞(Rd )Ẽ

(∫ T

0

∣∣1 − χR

(
X̃(n)

s

)∣∣ds

)
+ Ẽ

(∫ T

0

[
χR

∣∣b(n)
1 − b

(m)
1

∣∣](s, X̃(n)
s

)
ds

)

≤ C

R

∫ T

0
E

∣∣X(n)
s

∣∣ds + E

(∫ T

0

[
χR

∣∣b(n)
1 − b

(m)
1

∣∣](s,X(n)
s

)
ds

)

≤ C

R
+ C

∥∥χR

∣∣b(n)
1 − b

(m)
1

∣∣∥∥
Lq([0,T ];Lp)

.

Similarly, by Claim 2, we have

I
(n,m)
3 ≤ C

R
+ C

∥∥χR

∣∣b(m)
1 − b1

∣∣∥∥
Lq([0,T ];Lp)

.

Taking limits for both sides of (4.3) in order: n → ∞, m → ∞ and R → ∞, we obtain (4.2) for i = 1. It is similar to
prove (4.2) for i = 2. The whole proof is complete. �

Remark 4.2. When b is time-independent and the Lévy measure ν(dξ) = Cα

|ξ |d+α dξ , Theorem 4.1 has been proven by
Chen, Kim and Song [7], Theorem 2.5, by different argument.

5. Proof of Theorem 1.1

We now consider the following linear PIDE for λ > 0:

∂tu = (L0 − λ)u + bi ∂iu + f, u0 ≡ 0. (5.1)

As in the previous section, one may define the notion of generalized solutions and has:

Theorem 5.1. Let α ∈ (1,2) and γ ∈ (1, α). Assume that for some p > d
γ

and 0 ≤ β ∈ (1 − γ + d
p
,1),

b ∈ L∞
loc

(
R+,L∞(

R
d
) ∩ W

β
p

)
, f ∈ L∞

loc

(
R+;W

β
p

)
.

Then there exists a unique generalized solution u = uλ ∈ C(R+;H
γ+β
p ) to PIDE (5.1). Moreover, for some δ > 0 and

any λ ≥ 1,
∥∥uλ

t

∥∥
γ+β,p

≤ Ctλ
−δ‖f ‖

L∞([0,t];Wβ
p)

, ∀t ≥ 0, (5.2)
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where Ct > 0 is an increasing function of t with limt↓0 Ct = 0.

Proof. As in the proof of Theorem 3.6, we only need to prove the a priori estimate (5.2). Let u satisfy the following
integral equation:

ut (x) =
∫ t

0
e−λ(t−s)Tt−s

(
bi
s ∂ius + fs

)
(x)ds, ∀t ≥ 0.

Let ε ∈ (0, α − γ ) and q > α
α−γ−ε

. By Lemma 2.5 and Hölder’s inequality, we have

‖ut‖γ+β,p ≤ C

∫ t

0
e−λ(t−s)(t − s)(−γ+ε)/α

(∥∥bi
s ∂ius

∥∥
β−ε,p

+ ‖fs‖β−ε,p

)
ds

(2.4)≤ C

(∫ t

0
e−λq(t−s)(t − s)−q(γ+ε)/((q−1)α) ds

)(q−1)/q(∫ t

0

(∥∥bi
s ∂ius

∥∥∼
β,p

+ ‖fs‖∼
β,p

)q ds

)1/q

≤ Cλ(γ+ε)/α−1+1/q

(∫ ∞

0
e−ss−q(γ+ε)/((q−1)α) ds

)(q−1)/q(∫ t

0

(∥∥bi
s ∂ius

∥∥∼
β,p

+ ‖fs‖∼
β,p

)q ds

)1/q

.

In view of (γ + β − 1)p > d and γ > 1, we have

∥∥bi
s ∂ius

∥∥∼
β,p

(2.3)≤ ‖bs‖∞‖∇us‖p +
(∫

Rd

∫
Rd

|(bi
s ∂ius)(x) − (bi

s ∂ius)(y)|p
|x − y|d+βp

dx dy

)1/p

≤ ‖bs‖∞‖∇us‖p + ‖bs‖∞‖∇us‖∼
β,p + ‖bs‖∼

β,p‖∇us‖∞
(2.1)≤ ‖bs‖∞‖us‖1,p + ‖bs‖∞‖us‖∼

1+β,p + C‖bs‖∼
β,p‖us‖γ+β,p

(2.4)≤ C
(‖bs‖∞ + ‖bs‖∼

β,p

)‖us‖γ+β,p.

Hence,

‖ut‖q
γ+β,p ≤ Cλq(γ+ε)/α−q+1

(
‖b‖q

L∞([0,t];L∞∩W
β
p)

∫ t

0 ‖us‖q
γ+β,p ds + t‖f ‖q

L∞([0,t];Wβ
p)

)
.

By Gronwall’s inequality, we obtain (5.2) with δ = q − 1 − q(γ+ε)
α

> 0. �

Below, we assume that b ∈ L∞
loc(R+;L∞(Rd) ∩ W

β
p) with

β ∈
(

1 − α

2
,1

)
, p >

2d

α
, (5.3)

and fix

γ ∈
((

1 + α

2
− β

)
∨ 1, α

)
.

As in [12,21], let u� solve the following PIDE:

∂tu
� = (L0 − λ)u� + bi ∂iu

� + b�, u�
0(x) = 0, � = 1, . . . , d.

Fix T > 0 and set

vt (x) := (
u1

T −t (x), . . . , ud
T −t (x)

)
.
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Then vt (x) solves the following PIDE:

∂tv + (L0 − λ)v + bi ∂iv + b = 0, vT (x) = 0. (5.4)

Since (γ + β − 1)p > d , by (2.1) and (5.2), one can choose λ sufficiently large such that

sup
t∈[0,T ]

sup
x∈Rd

∣∣∇vt (x)
∣∣ ≤ sup

t∈[0,T ]
C‖vt‖γ+β,p ≤ CT λ−δ‖b‖

L∞([0,T ];Wβ
p)

≤ 1

2
. (5.5)

Let us define

Φt(x) = x + vt (x).

Since for each t ∈ [0, T ],
1

2
|x − y| ≤ ∣∣Φt(x) − Φt(y)

∣∣ ≤ 3

2
|x − y|,

x �→ Φt(x) is a diffeomorphism and

∣∣∇Φt(x)
∣∣ ≤ 3

2
,

∣∣∇Φ−1
t (x)

∣∣ ≤ 2. (5.6)

Lemma 5.2. Let Φt(x) be defined as above. Fix an (Ft )-stopping time τ and let Xt ∈ Sτ
b (x) be a local solution of

SDE (1.1). Then Yt = Φt(Xt ) solves the following SDE on [0, T ∧ τ):

Yt = Φ0(x) +
∫ t

0
b̃s(Ys)ds +

∫ t

0

∫
|z|≤1

gs(Ys−, z)Ñ(ds,dz) +
∫ t

0

∫
|z|>1

gs(Ys−, z)N(ds,dz), (5.7)

where

b̃s(y) := λvs

(
Φ−1

s (y)
) −

∫
|z|>1

[
vs

(
Φ−1

s (y) + z
) − vs

(
Φ−1

s (y)
)]

ν(dz) (5.8)

and

gs(y, z) := Φs

(
Φ−1

s (y) + z
) − y. (5.9)

Proof. Set

vε
t (x) := (v ∗ ρε)(t, x), Φε

t (x) = x + vε
t (x).

By Itô’s formula, we have for all t ∈ [0, T ∧ τ),

Φε
t (Xt ) = Φε

0(X0) +
∫ t

0

[
∂sΦ

ε
s (Xs) + (

bi
s ∂iΦ

ε
s

)
(Xs)

]
ds

+
∫ t

0

∫
|z|≤1

[
Φε

s (Xs− + z) − Φε
s (Xs−) − zi ∂iΦ

ε
s (Xs−)

]
ν(dz)ds

+
∫ t

0

∫
|z|≤1

[
Φε

s (Xs− + z) − Φε
s (Xs−)

]
Ñ(ds,dz)

+
∫ t

0

∫
|z|>1

[
Φε

s (Xs− + z) − Φε
s (Xs−)

]
N(ds,dz)

=: Φε
0(X0) + I ε

1 (t) + I ε
2 (t) + I ε

3 (t) + I ε
4 (t).
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We want to take limits for the above equality. First of all, for I ε
4 (t), by the dominated convergence theorem, we have

I ε
4 (t) =

∫ t

0

∫
|z|>1

zN(ds,dz) +
∫ t

0

∫
|z|>1

[
vε
s (Xs− + z) − vε

s (Xs−)
]
N(ds,dz)

→
∫ t

0

∫
|z|>1

zN(ds,dz) +
∫ t

0

∫
|z|>1

[
vs(Xs− + z) − vs(Xs−)

]
N(ds,dz)

=
∫ t

0

∫
|z|>1

[
Φs(Xs− + z) − Φs(Xs−)

]
N(ds,dz) =

∫ t

0

∫
|z|>1

gs(Ys−, z)N(ds,dz),

and for I ε
3 (t),

E

∣∣∣∣
∫ t∧τ

0

∫
|z|≤1

[
Φε

s (Xs− + z) − Φε
s (Xs−) − Φs(Xs− + z) + Φs(Xs−)

]
Ñ(ds,dz)

∣∣∣∣
2

= E

∫ t∧τ

0

∫
|z|≤1

∣∣Φε
s (Xs− + z) − Φε

s (Xs−) − Φs(Xs− + z) + Φs(Xs−)
∣∣2

ν(dz)ds → 0,

where we have used that for some C independent of ε,

∣∣Φε
s (Xs− + z) − Φε

s (Xs−)
∣∣ ≤ C|z|2.

Noting that

∂sΦ
ε = ∂svε = −(L0 − λ)vε − (

bi ∂iv
) ∗ ρε − b ∗ ρε = −(L0 − λ)vε − (

bi ∂iΦ
) ∗ ρε,

we have

I ε
1 (t) + I ε

2 (t) = λ

∫ t

0
vε
s (Xs)ds −

∫ t

0

∫
|z|>1

[
vε
s (Xs + z) − vε

s (Xs)
]
ν(dz)ds

+
∫ t

0

[(
bi
s ∂iΦ

ε
s

)
(Xs) − ((

bi ∂iΦ
) ∗ ρε

)
(s,Xs)

]
ds.

By the dominated convergence theorem, the first two terms converge to

λ

∫ t

0
vs(Xs)ds −

∫ t

0

∫
|z|>1

[
vs(Xs + z) − vs(Xs)

]
ν(dz)ds =

∫ t

0
b̃s(Ys)ds.

Using Krylov’s estimate (3.13), we have

E

∫ t∧τ

0

∣∣(bi
s ∂iΦ

ε
s

)
(Xs) − ((

bi ∂iΦ
) ∗ ρε

)
(s,Xs)

∣∣ds

≤ C

∫ t

0

(∫
Rd

∣∣(bi
s ∂iΦ

ε
s

)
(x) − ((

bi ∂iΦ
) ∗ ρε

)
(s, x)

∣∣p dx

)q/p

ds → 0,

where q > α
α−1 . Combining the above calculations, we obtain that Yt solves (5.7). �

We are now in a position to give:

Proof of Theorem 1.1. We first assume that for some β,p satisfying (5.3),

b ∈ L∞
loc

(
R+;L∞(

R
d
) ∩ W

β
p

)
.
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The existence of weak solutions has been obtained in Theorem 4.1. Below, we concentrate on the proof of the pathwise
uniqueness.

Fix an (Ft )-stopping time τ and let Xt, X̂t ∈ Sτ
b (x) be two solutions of SDE (1.1). Fixing T > 0, we want to prove

that

Yt := Φt(Xt ) = Φt(X̂t ) =: Ŷt , ∀t ∈ [0, T ∧ τ).

Define σ0 ≡ 0 and for n ∈ N,

σn := inf
{
t ≥ σn−1: |Lt − Lt−| > 1

}
.

Set

σT
n = σn ∧ T ∧ τ.

Recall (3.1) and
∫ t

0

∫
|z|>1

gs(Ys−, z)N(ds,dz) =
∑

s∈(0,t]
gs(Ys−,Ls − Ls−) · 1|Ls−Ls−|>1.

By Lemma 5.2, Zt := Yt − Ŷt satisfies the following equation on random interval [σT
n , σ T

n+1):

Zt = ZσT
n

+
∫ t

σ T
n

[
b̃s(Ys) − b̃s(Ŷs)

]
ds +

∫ t

σ T
n

∫
|z|≤1

[
gs(Ys−, z) − gs(Ŷs−, z)

]
Ñ(ds,dz). (5.10)

Let us first prove that

Zt = 0 a.s. on
[
0, σ T

1

)
.

Note that by (5.8), (5.5) and (5.6),
∣∣b̃s(y) − b̃s

(
y′)∣∣ ≤ C

∣∣y − y′∣∣, (5.11)

and by (2.5),
∣∣gs(y, z) − gs

(
y′, z

)∣∣ = ∣∣Φs

(
Φ−1

s (y) + z
) − Φs

(
Φ−1

s (y)
) − Φs

(
Φ−1

s

(
y′) + z

) + Φs

(
Φ−1

s

(
y′))∣∣

= ∣∣vs

(
Φ−1

s (y) + z
) − vs

(
Φ−1

s (y)
) − vs

(
Φ−1

s

(
y′) + z

) + vs

(
Φ−1

s

(
y′))∣∣

= ∣∣(Tzvs)
(
Φ−1

s (y)
) − (Tzvs)

(
Φ−1

s

(
y′))∣∣

≤ C
∣∣Φ−1

s (y) − Φ−1
s

(
y′)∣∣ · (M|∇Tzvs |

(
Φ−1

s (y)
) + M|∇Tzvs |

(
Φ−1

s

(
y′)))

≤ C
∣∣y − y′∣∣ · (M|∇Tzvs |

(
Φ−1

s (y)
) + M|∇Tzvs |

(
Φ−1

s

(
y′))). (5.12)

Since E|Xt |2 = +∞, in order to take expectations for (5.10), we need to use stopping time to cut off it. For R > 0,
define

ζR := inf
{
t ≥ 0: |Xt | ∨ |X̂t | ≥ R

}
. (5.13)

Let η be any (Ft )-stopping time. By (5.10), (5.11) and (5.12), we have

E|Zt∧σT
1 ∧ζR∧η−|2 ≤ CE

∫ t∧σT
1 ∧ζR∧η

0

(
|Zs |2 +

∫
|z|≤1

∣∣gs(Ys−, z) − gs(Ŷs−, z)
∣∣2

ν(dz)

)
ds

≤ CE

∫ t∧σT
1 ∧ζR∧η

0
|Zs−|2 d(s + As) ≤ CE

∫ t∧η

0
|Zs∧σT

1 ∧ζR−|2 d(s + As∧τ ),
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where

At :=
∫ t

0

∫
|z|≤1

(
M|∇Tzvs |

(
Φ−1

s (Ys)
) + M|∇Tzvs |

(
Φ−1

s (Ŷs)
))2

ν(dz)ds.

By Fubini’s theorem, we have

EAt∧τ =
∫

|z|≤1
E

∫ t∧τ

0

(
M|∇Tzvs |(Xs) + M|∇Tzvs |(X̂s)

)2 dsν(dz)

(3.13)≤ C

∫
|z|≤1

sup
s∈[0,t]

∥∥(
M|∇Tzvs |

)2∥∥
p/2ν(dz)

= C

∫
|z|≤1

sup
s∈[0,t]

∥∥M|∇Tzvs |
∥∥2

p
ν(dz)

(2.6)≤ C

∫
|z|≤1

sup
s∈[0,t]

‖Tzvs‖2
1,pν(dz)

(2.7)≤ C sup
s∈[0,t]

‖vs‖2
γ+β,p

∫
|z|≤1

|z|2(γ+β−1)ν(dz) < +∞,

where in the last step we have used (5.5), 2(γ + β − 1) > α and (1.5). Therefore, t �→ At∧τ is a continuous (Ft )-
adapted increasing process. By Lemma 2.6, we obtain that for all t ≥ 0,

Zt∧σT
1 ∧ζR− = 0, a.s.

Letting R → ∞ yields that for all t ∈ [0, T ∧ τ),

Zt∧σ1− = Zt∧σT
1 − = 0, a.s.

Thus, if σ1 < T ∧ τ , then

Zσ1 = Zσ1− + [
gσ1(Yσ1−,Lσ1 − Lσ1−) − gσ1(Ŷσ1−,Lσ1 − Lσ1−)

] = 0.

Repeating the above calculations, we find that for all n ∈ N and t ∈ [0, T ∧ τ),

Zt∧σn− = 0 a.s.

Letting n,T → ∞ produces that for all t ∈ [0, τ ),

Zt = 0 ⇒ Yt = Ŷt ⇒ Xt = X̂t a.s.

Lastly, we assume that b satisfies (1.7) and (1.8). For n ∈ N, let χn ∈ C∞
0 (Rd) with χn(x) = 1 for |x| ≤ n and

χn(x) = 0 for |x| > n + 1. Define

b
(n)
t (x) = bt (x)χn(x).

Then b(n) ∈ L∞
loc(R+;L∞(Rd) × W

β
p). By the previous proof, for each x ∈ R

d , there exists a unique strong solution

X
(n)
t ∈ S∞

b(n) (x) to SDE (1.1) with drift b(n). For n ≥ k, define

τn,k(x,ω) := inf
{
t ≥ 0:

∣∣X(n)
t (ω, x)

∣∣ ≥ k
}
.

It is easy to see that

X
(n)
t (x),X

(k)
t (x) ∈ S

τn,k(x)

b(k) (x).

Since the local uniqueness has been proven, we have

P
{
ω: X

(n)
t (ω, x) = X

(k)
t (ω, x),∀t ∈ [

0, τn,k(x,ω)
)} = 1,
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which implies that for n ≥ k,

τk,k(x) ≤ τn,k(x) ≤ τn,n(x), a.s.

Hence, if we let ζk(x) := τk,k(x), then ζk(x) is an increasing sequence of (Ft )-stopping times and for n ≥ k,

P
{
ω: X

(n)
t (x,ω) = X

(k)
t (x,ω),∀t ∈ [

0, ζk(x,ω)
)} = 1.

Now, for each k ∈ N, we can define Xt(x,ω) = X
(k)
t (x,ω) for t < ζk(x,ω) and ζ(x) = limk→∞ ζk(x). It is clear that

Xt(x) ∈ S
ζ(x)
b (x) and (1.9) holds. �
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