Jaffuel, Bruno
The critical barrier for the survival of branching random walk with absorption
Annales de l'I.H.P. Probabilités et statistiques, Tome 48 (2012) no. 4 , p. 989-1009
Zbl 1263.60076 | MR 3052402 | 1 citation dans Numdam
doi : 10.1214/11-AIHP453
URL stable : http://www.numdam.org/item?id=AIHPB_2012__48_4_989_0

Classification:  60J80
Nous étudions une marche aléatoire branchante sur avec une barrière absorbante. La position de la barrière dépend de la génération. À chaque génération, seuls les individus nés sous la barrière survivent et se reproduisent. Étant donnée une loi de reproduction, Biggins et al. [Ann. Appl. Probab. 1 (1991) 573-581] ont déterminé, pour une barrière linéaire, si le processus survit ou s’éteint. Dans cet article, nous affinons ce résultat : dans le cas frontière où la vitesse de la barrière correspond à la vitesse de la particule la plus à gauche d’une génération donnée, nous allons à l’ordre suivant en ajoutant un terme an 1/3 à la position de la barrière pour la nième génération et obtenons une valeur critique explicite a c telle que le processus s’éteint quand a<a c et survit quand a>a c . Nous obtenons aussi le taux d’extinction lorsque a<a c et une borne inférieure sur la taille de la population lorsqu’il survit.
We study a branching random walk on with an absorbing barrier. The position of the barrier depends on the generation. In each generation, only the individuals born below the barrier survive and reproduce. Given a reproduction law, Biggins et al. [Ann. Appl. Probab. 1 (1991) 573-581] determined whether a linear barrier allows the process to survive. In this paper, we refine their result: in the boundary case in which the speed of the barrier matches the speed of the minimal position of a particle in a given generation, we add a second order term an 1/3 to the position of the barrier for the nth generation and find an explicit critical value a c such that the process dies when a<a c and survives when a>a c . We also obtain the rate of extinction when a<a c and a lower bound for the population when it survives.

Bibliographie

[1] L. Addario-Berry and N. Broutin. Total progeny in killed branching random walk. Probab. Theory Related Fields 151 (2011) 265-295. Zbl 1230.60091

[2] E. Aïdékon. Tail asymptotics for the total progeny of the critical killed branching random walk. Electron. Commun. Probab. 15 (2010) 522-533. Zbl 1226.60117

[3] E. Aïdékon, Y. Hu and O. Zindy. The precise tail behavior of the total progeny of a killed branching random walk. Preprint, 2011. Available at arXiv:1102.5536 [math.PR]. Zbl pre06253398

[4] E. Aïdékon and B. Jaffuel. Survival of branching random walks with absorption. Stochastic Process. Appl. 121 (2011) 1901-1937. Zbl 1236.60080

[5] V. I. Arnol'D. Ordinary Differential Equations. MIT Press, Cambridge, MA, 1973. Translated and edited by R. A. Silverman. Zbl 0296.34001

[6] J. D. Biggins and A. E. Kyprianou. Seneta-Heyde norming in the branching random walk. Ann. Probab. 25 (1997) 337-360. Zbl 0873.60062

[7] J. D. Biggins, B. D. Lubachevsky, A. Shwartz and A. Weiss. A branching random walk with barrier. Ann. Appl. Probab. 1 (1991) 573-581. MR 1129775 | Zbl 0749.60076

[8] B. Derrida and D. Simon. The survival probability of a branching random walk in presence of an absorbing wall. Europhys. Lett. 78 (2007). Art. 60006, 6. MR 2366713 | Zbl 1244.82071

[9] B. Derrida and D. Simon. Quasi-stationary regime of a branching random walk in presence of an absorbing wall. J. Stat. Phys. 131 (2008) 203-233. MR 2386578 | Zbl 1144.82321

[10] N. Gantert, Y. Hu and Z. Shi. Asymptotics for the survival probability in a killed branching random walk. Ann. Inst. H. Poincaré Probab. Stat. 47 (2011) 111-129. Numdam | MR 2779399 | Zbl 1210.60093

[11] J. W. Harris and S. C. Harris. Survival probabilities for branching Brownian motion with absorption. Electron. Commun. Probab. 12 (2007) 81-92. MR 2300218 | Zbl 1132.60059

[12] H. Kesten. Branching Brownian motion with absorption. Stochastic Processes Appl. 7 (1978) 9-47. MR 494543 | Zbl 0383.60077

[13] A. A. Mogul'Skii. Small deviations in the space of trajectories. Theory Probab. Appl. 19 (1975) 726-736. Zbl 0326.60061

[14] R. Pemantle. Search cost for a nearly optimal path in a binary tree. Ann. Appl. Probab. 19 (2009) 1273-1291. MR 2538070 | Zbl 1176.68093