Pointwise ergodic theorems with rate and application to the CLT for Markov chains
Annales de l'I.H.P. Probabilités et statistiques, Tome 45 (2009) no. 3, p. 710-733
Soit T un opérateur de Dunford-Schwartz sur un espace de probabilité (Ω, μ). Pour f∈Lp(μ), p>1, nous obtenons des théorèmes ergodiques du type (1/n1/p)∑k=1nTkf→0 μ-p.s. sous des conditions portant sur la croissance de ‖∑k=1nTkf‖p. Lorsque T est induit par une transformation préservant la mesure et que p=2, nous obtenons de meilleurs résultats. Ces derniers sont alors utilisés pour obtenir le théorème central limite «quenched» pour les sommes partielles associées aux fonctionnelles de chaînes de Markov stationnaires et ergodiques. Nous améliorons ainsi des résultats antérieurs de Derriennic-Lin et Wu-Woodroofe.
Let T be Dunford-Schwartz operator on a probability space (Ω, μ). For f∈Lp(μ), p>1, we obtain growth conditions on ‖∑k=1nTkf‖p which imply that (1/n1/p)∑k=1nTkf→0 μ-a.e. In the particular case that p=2 and T is the isometry induced by a probability preserving transformation we get better results than in the general case; these are used to obtain a quenched central limit theorem for additive functionals of stationary ergodic Markov chains, which improves those of Derriennic-Lin and Wu-Woodroofe.
DOI : https://doi.org/10.1214/08-AIHP180
Classification:  60F05,  60J05,  37A30,  37A05,  47A35,  37A50
@article{AIHPB_2009__45_3_710_0,
     author = {Cuny, Christophe and Lin, Michael},
     title = {Pointwise ergodic theorems with rate and application to the CLT for Markov chains},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     publisher = {Gauthier-Villars},
     volume = {45},
     number = {3},
     year = {2009},
     pages = {710-733},
     doi = {10.1214/08-AIHP180},
     zbl = {1186.37013},
     mrnumber = {2548500},
     language = {en},
     url = {http://www.numdam.org/item/AIHPB_2009__45_3_710_0}
}
Cuny, Christophe; Lin, Michael. Pointwise ergodic theorems with rate and application to the CLT for Markov chains. Annales de l'I.H.P. Probabilités et statistiques, Tome 45 (2009) no. 3, pp. 710-733. doi : 10.1214/08-AIHP180. https://www.numdam.org/item/AIHPB_2009__45_3_710_0/

[1] I. Assani and M. Lin. On the one-sided ergodic Hilbert transform. Contemp. Math. 430 (2007) 20-39. | MR 2331323 | Zbl 1134.47007

[2] G. Cohen and M. Lin. Extensions of the Menchoff-Rademacher theorem with applications to ergodic theory. Israel J. Math. 148 (2005) 41-86. | MR 2191224 | Zbl 1086.60019

[3] J. Dedecker and E. Rio. On the functional central limit theorem for stationary processes. Ann. Inst. H. Poincaré Probab. Statist. 36 (2000) 1-34. | Numdam | MR 1743095 | Zbl 0949.60049

[4] Y. Derriennic. Some aspects of recent works on limit theorems in ergodic theory with special emphasis on the “central limit theorem.” Discrete Contin. Dyn. Syst. 15 (2006) 143-158. | MR 2191389 | Zbl 1107.37009

[5] Y. Derriennic and M. Lin. Fractional Poisson equations and ergodic theorems for fractional coboundaries. Israel J. Math. 123 (2001) 93-130. | MR 1835290 | Zbl 0988.47009

[6] Y. Derriennic and M. Lin. The central limit theorem for Markov chains with normal transition operators, started at a point. Probab. Theory Related Fields 119 (2001) 508-528. | MR 1826405 | Zbl 0974.60017

[7] Y. Derriennic and M. Lin. The central limit theorem for Markov chains started at a point. Probab. Theory Related Fields 125 (2003) 73-76. | MR 1952457 | Zbl 1012.60028

[8] Y. Derriennic and M. Lin. The central limit theorem for random walks on orbits of probability preserving transformations. Contemp. Math. 444 (2007) 31-51. | MR 2423622 | Zbl 1130.60026

[9] N. Dunford and J. Schwartz. Linear Operators, Part I. Wiley, New York. 1958. | MR 1009162 | Zbl 0084.10402

[10] N. Dunford and J. Schwartz. Linear Operators, Part II. Wiley, New York, 1963. | MR 1009163 | Zbl 0128.34803

[11] W. Feller. An Introduction to Probability Theory and Its Applications, Vol. II, 2nd edition. Wiley, New York, 1971. | MR 270403 | Zbl 0219.60003

[12] V. F. Gaposhkin. On the dependence of the convergence rate in the SLLN for stationary processes on the rate of decay of correlation function. Theory Probab. Appl. 26 (1981) 706-720. | MR 636767 | Zbl 0488.60040

[13] V. F. Gaposhkin. Spectral criteria for the existence of generalized ergodic transformations (in Russian). Teor. Veroyatnost. i Primenen. 41(2) (1996) 251-271. (Translation in Theory Probab. Appl. 41 (1996) 247-264 (1997).) | MR 1445750 | Zbl 0881.60038

[14] M. Gordin and B. Lifshitz. A central limit theorem for Markov process. Soviet Math. Doklady 19 (1978) 392-394. | Zbl 0395.60057

[15] M. Gordin and B. Lifshitz. A remark about a Markov process with normal transition operator. Proc. Third Vilnius Conf. Probab. Statist. 147-148. Akad. Nauk Litovsk., Vilnius, 1981 (in Russian).

[16] M. Gordin and B. Lifshitz. The central limit theorem for Markov processes with normal transition operator, and a strong form of the central limit theorem. In Limit Theorems for Functionals of Random Walks Sections IV.7 and IV.8. A. Borodin and I. Ibragimov (Eds). Proc. Steklov Inst. Math. 195, 1994. (English translation Amer. Math. Soc., Providence, RI, 1995.)

[17] A. G. Kachurovskii. The rate of convergence in ergodic theorems. Russian Math. Surveys 51 (1996) 653-703. | MR 1422228 | Zbl 0880.60024

[18] C. Kipnis and S. R. Varadhan. Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions. Comm. Math. Phys. 104 (1986) 1-19. | MR 834478 | Zbl 0588.60058

[19] U. Krengel. Ergodic Theorems. De Gruyter, Berlin, 1985. | MR 797411 | Zbl 0575.28009

[20] M. Maxwell and M. Woodroofe. Central limit theorems for additive functionals of Markov chains. Ann. Probab. 28 (2000) 713-724. | MR 1782272 | Zbl 1044.60014

[21] F. Moricz. Moment inequalities and the strong laws of large numbers. Z. Wahrsch. Verw. Gebiete 35 (1976) 299-314. | MR 407950 | Zbl 0314.60023

[22] M. Peligrad and S. Utev. A new maximal inequality and invariance principle for stationary sequences. Ann. Probab. 33 (2005) 798-815. | MR 2123210 | Zbl 1070.60025

[23] F. Rassoul-Agha and T. Seppäläinen. An almost sure invariance principle for additive functionals of Markov chains. Statist. Probab. Lett. 78 (2008) 854-860. | MR 2398359 | Zbl 1139.60317

[24] F. Riesz and B. Sz.-Nagy. Leçons D'analyse Fonctionnelle, 3rd edition. Akadémiai Kiadó, Budapest, 1955. | MR 68139 | Zbl 0064.35404

[25] M. Weber. Uniform bounds under increment conditions. Trans. Amer. Math. Soc. 358 (2006) 911-936. | MR 2177045 | Zbl 1078.60025

[26] W. B. Wu. Strong invariance principles for dependent random variables. Ann. Probab. 35 (2007) 2294-2320. | MR 2353389 | Zbl 1166.60307

[27] W. B. Wu and M. Woodroofe. Martingale approximations for sums of stationary processes. Ann. Probab. 32 (2004) 1674-1690. | MR 2060314 | Zbl 1057.60022

[28] O. Zhao and M. Woodroofe. Laws of the iterated logarithm for stationary processes. Ann. Probab. 36 (2008) 127-142. | MR 2370600 | Zbl 1130.60039

[29] A. Zygmund. Trigonometric Series, corrected 2nd edition. Cambridge Univ. Press, Cambridge, UK, 1969. | Zbl 0367.42001