Let be the unique normal martingale such that and
Soit l’unique martingale normale telle que et
Keywords: monotone independence, monotone Poisson process, non-commutative probability, quantum probability
@article{AIHPB_2008__44_2_258_0,
author = {Belton, Alexander C. R.},
title = {On the path structure of a semimartingale arising from monotone probability theory},
journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
pages = {258--279},
year = {2008},
publisher = {Gauthier-Villars},
volume = {44},
number = {2},
doi = {10.1214/07-AIHP116},
mrnumber = {2446323},
zbl = {1180.60037},
language = {en},
url = {https://www.numdam.org/articles/10.1214/07-AIHP116/}
}
TY - JOUR AU - Belton, Alexander C. R. TI - On the path structure of a semimartingale arising from monotone probability theory JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2008 SP - 258 EP - 279 VL - 44 IS - 2 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/07-AIHP116/ DO - 10.1214/07-AIHP116 LA - en ID - AIHPB_2008__44_2_258_0 ER -
%0 Journal Article %A Belton, Alexander C. R. %T On the path structure of a semimartingale arising from monotone probability theory %J Annales de l'I.H.P. Probabilités et statistiques %D 2008 %P 258-279 %V 44 %N 2 %I Gauthier-Villars %U https://www.numdam.org/articles/10.1214/07-AIHP116/ %R 10.1214/07-AIHP116 %G en %F AIHPB_2008__44_2_258_0
Belton, Alexander C. R. On the path structure of a semimartingale arising from monotone probability theory. Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) no. 2, pp. 258-279. doi: 10.1214/07-AIHP116
[1] . The structure of the quantum semimartingale algebras. J. Operator Theory 46 (2001) 391-410. | Zbl | MR
[2] and . The chaotic-representation property for a class of normal martingales. Probab. Theory Related Fields 139 (2007) 543-562. | Zbl | MR
[3] . Sur les fermés aléatoires. Séminaire de Probabilités XIX 397-495. J. Azéma and M. Yor (Eds). Lecture Notes in Math. 1123. Spring- er, Berlin, 1985. | Zbl | MR | Numdam
[4] and . Étude d'une martingale remarquable. Séminaire de Probabilités XXIII 88-130. J. Azéma, P.-A. Meyer and M. Yor (Eds). Lecture Notes in Math. 1372. Springer, Berlin, 1989. | Zbl | MR | Numdam
[5] . An isomorphism of quantum semimartingale algebras. Q. J. Math. 55 (2004) 135-165. | Zbl | MR
[6] . A note on vacuum-adapted semimartingales and monotone independence. In Quantum Probability and Infinite Dimensional Analysis XVIII. From Foundations to Applications, 105-114. M. Schürmann and U. Franz (Eds), World Scientific, Singapore, 2005. | MR
[7] . The monotone Poisson process. In Quantum Probability 99-115. M. Bożejko, W. Młotkowski and J. Wysoczański (Eds). Banach Center Publications 73, Polish Academy of Sciences, Warsaw, 2006. | Zbl | MR
[8] . Probability and Measure, 3rd edition. Wiley, New York, 1995. | Zbl | MR
[9] . Caractérisation d'une classe de semimartingales. Séminaire de Probabilités XIII 250-252. C. Dellacherie, P.-A. Meyer and M. Weil (Eds). Lecture Notes in Math. 721. Springer, Berlin, 1979. | Zbl | MR | Numdam
[10] , , , and . On the Lambert W function. Adv. Comput. Math. 5 (1996) 329-359. | Zbl | MR
[11] and . The fundamental theorem of asset pricing for unbounded stochastic processes. Math. Ann. 312 (1998) 215-250. | Zbl | MR
[12] . Compensation de processus à variation finie non localement intégrables. Séminaire de Probabilités XIV 152-160. J. Azéma and M. Yor (Eds). Lecture Notes in Math. 784. Springer, Berlin, 1980. | Zbl | Numdam
[13] . On the Azéma martingales. Séminaire de Probabilités XXIII 66-87. J. Azéma, P.-A. Meyer and M. Yor (Eds). Lecture Notes in Math. 1372. Springer, Berlin, 1989. | Zbl | Numdam
[14] . Personal communication, 2006.
[15] , and . Concrete Mathematics, 2nd edition. Addison-Wesley, Reading, MA, 1994. | Zbl | MR
[16] . Monotonic independence, monotonic central limit theorem and monotonic law of small numbers. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 4 (2001) 39-58. | Zbl | MR
[17] . Stochastic Integration and Differential Equations. A New Approach. Springer, Berlin, 1990. | Zbl | MR
[18] and . Diffusions, Markov Processes and Martingales. Volume 1: Foundations, 2nd edition. Cambridge University Press, Cambridge, 2000. | Zbl | MR
[19] . Real and Complex Analysis, 3rd edition. McGraw-Hill, New York, 1987. | Zbl | MR
[20] . A new example of “independence” and “white noise”. Probab. Theory Related Fields 84 (1990) 141-159. | Zbl | MR
[21] . Représentation prévisible et changement de temps. Ann. Probab. 14 (1986) 1070-1074. | Zbl | MR
[22] and . Calcul stochastique dépendant d'un paramètre. Z. Wahrsch. Verw. Gebiete 45 (1978) 109-133. | Zbl | MR
[23] . Martingales et équations de structure: étude géométrique. Thèse, Université Louis Pasteur Strasbourg 1, 1999. | MR
[24] . The α-dimensional measure of the graph and set of zeros of a Brownian path. Proc. Cambridge Philos. Soc. 51 (1955) 265-274. | Zbl | MR
Cité par Sources :





