Annealed deviations of random walk in random scenery
Annales de l'I.H.P. Probabilités et statistiques, Volume 43 (2007) no. 1, p. 47-76
@article{AIHPB_2007__43_1_47_0,
     author = {Gantert, Nina and K\"onig, Wolfgang and Shi, Zhan},
     title = {Annealed deviations of random walk in random scenery},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     publisher = {Elsevier},
     volume = {43},
     number = {1},
     year = {2007},
     pages = {47-76},
     doi = {10.1016/j.anihpb.2005.12.002},
     zbl = {1119.60083},
     mrnumber = {2288269},
     language = {en},
     url = {http://www.numdam.org/item/AIHPB_2007__43_1_47_0}
}
Gantert, Nina; König, Wolfgang; Shi, Zhan. Annealed deviations of random walk in random scenery. Annales de l'I.H.P. Probabilités et statistiques, Volume 43 (2007) no. 1, pp. 47-76. doi : 10.1016/j.anihpb.2005.12.002. http://www.numdam.org/item/AIHPB_2007__43_1_47_0/

[1] A. Asselah, F. Castell, Large deviations for Brownian motion in a random scenery, Probab. Theory Related Fields 126 (2003) 497-527. | MR 2001196 | Zbl 1043.60018

[2] A. Asselah, F. Castell, A note on random walk in random scenery, preprint, 2005.

[3] A. Asselah, F. Castell, Self-intersection times for random walk, and random walk in random scenery in dimension d5, preprint, 2005.

[4] G. Ben Arous, R. Léandre, Décroissance exponentielle du noyau de la chaleur sur la diagonale. II, Probab. Theory Related Fields 90 (3) (1991) 377-402. | MR 1133372 | Zbl 0734.60027

[5] N.H. Bingham, C.M. Goldie, J.L. Teugels, Regular Variation, Cambridge University Press, Cambridge, 1987. | MR 898871 | Zbl 0617.26001

[6] E. Bolthausen, A central limit theorem for two-dimensional random walks in random sceneries, Ann. Probab. 17 (1989) 108-115. | MR 972774 | Zbl 0679.60028

[7] A.N. Borodin, Limit theorems for sums of independent random variables defined on a transient random walk, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 85 (1979) 17-29, 237, 244. | MR 535455 | Zbl 0417.60027

[8] A.N. Borodin, A limit theorem for sums of independent random variables defined on a recurrent random walk, Dokl. Akad. Nauk SSSR 246 (4) (1979) 786-787. | MR 543530 | Zbl 0423.60025

[9] D.C. Brydges, G. Slade, The diffusive phase of a model of self-interacting walks, Probab. Theory Related Fields 103 (1995) 285-315. | MR 1358079 | Zbl 0832.60096

[10] F. Castell, Moderate deviations for diffusions in a random Gaussian shear flow drift, Ann. Inst. H. Poincaré Probab. Statist. 40 (3) (2004) 337-366. | Numdam | MR 2060457 | Zbl 1042.60009

[11] F. Castell, F. Pradeilles, Annealed large deviations for diffusions in a random shear flow drift, Stochastic Process Appl. 94 (2001) 171-197. | MR 1840830 | Zbl 1051.60028

[12] X. Chen, Exponential asymptotics and law of the iterated logarithm for intersection local times of random walks, Ann. Probab. 32 (4) (2004). | MR 2094445 | Zbl 1067.60071

[13] X. Chen, W. Li, Large and moderate deviations for intersection local times, Probab. Theory Related Fields 128 (2004) 213-254. | MR 2031226 | Zbl 1038.60074

[14] A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications, second ed., Springer, Berlin, 1998. | MR 1619036 | Zbl 0896.60013

[15] M. Donsker, S.R.S. Varadhan, On the number of distinct sites visited by a random walk, Comm. Pure Appl. Math. 32 (1979) 721-747. | MR 539157 | Zbl 0418.60074

[16] N. Gantert, R. Van Der Hofstad, W. König, Deviations of a random walk in a random scenery with stretched exponential tails, Stochastic Process. Appl. 116 (3) (2006) 480-492. | MR 2199560 | Zbl 1100.60056

[17] J. Gärtner, On large deviations from the invariant measure, Theory Probab. Appl. 22 (1) (1977) 24-39. | MR 471040 | Zbl 0375.60033

[18] J.-P. Kahane, Some Random Series of Functions, second ed., Cambridge University Press, Cambridge, 1985. | MR 833073 | Zbl 0571.60002

[19] H. Kesten, F. Spitzer, A limit theorem related to a new class of self-similar processes, Z. Wahrsch. Verw. Geb. 50 (1979) 5-25. | MR 550121 | Zbl 0396.60037

[20] W. König, P. Mörters, Brownian intersection local times: upper tail asymptotics and thick points, Ann. Probab. 30 (2002) 1605-1656. | MR 1944002 | Zbl 1032.60073

[21] E.H. Lieb, M. Loss, Analysis, Grad. Stud. Math., vol. 14, second ed., Amer. Math. Soc., Providence, RI, 2001. | MR 1817225 | Zbl 0966.26002

[22] M. Mcleod, J. Serrin, Uniqueness of solutions of semilinear Poisson equations, Proc. Natl. Acad. Sci. USA 78 (11) (1981) 6592-6595. | MR 634934 | Zbl 0474.35047

[23] V.V. Petrov, Sums of Independent Random Variables, Springer, Berlin, 1975. | MR 388499 | Zbl 0322.60042

[24] F. Spitzer, Principles of Random Walk, second ed., Springer, Berlin, 1976. | MR 388547 | Zbl 0359.60003

[25] K. Uchiyama, Green’s functions for random walks on Z N , Proc. London Math. Soc. 77 (3) (1998) 215-240. | MR 1625467 | Zbl 0893.60045

[26] M.I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1983) 567-576. | MR 691044 | Zbl 0527.35023