@article{AIHPB_2004__40_3_337_0,
author = {Castell, Fabienne},
title = {Moderate deviations for diffusions in a random gaussian shear flow drift},
journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
pages = {337--366},
year = {2004},
publisher = {Elsevier},
volume = {40},
number = {3},
doi = {10.1016/j.anihpb.2003.10.003},
mrnumber = {2060457},
zbl = {1042.60009},
language = {en},
url = {https://www.numdam.org/articles/10.1016/j.anihpb.2003.10.003/}
}
TY - JOUR AU - Castell, Fabienne TI - Moderate deviations for diffusions in a random gaussian shear flow drift JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2004 SP - 337 EP - 366 VL - 40 IS - 3 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpb.2003.10.003/ DO - 10.1016/j.anihpb.2003.10.003 LA - en ID - AIHPB_2004__40_3_337_0 ER -
%0 Journal Article %A Castell, Fabienne %T Moderate deviations for diffusions in a random gaussian shear flow drift %J Annales de l'I.H.P. Probabilités et statistiques %D 2004 %P 337-366 %V 40 %N 3 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpb.2003.10.003/ %R 10.1016/j.anihpb.2003.10.003 %G en %F AIHPB_2004__40_3_337_0
Castell, Fabienne. Moderate deviations for diffusions in a random gaussian shear flow drift. Annales de l'I.H.P. Probabilités et statistiques, Tome 40 (2004) no. 3, pp. 337-366. doi: 10.1016/j.anihpb.2003.10.003
[1] , , Quenched large deviations for diffusions in a random Gaussian shear flow drift, Stochastic Process. Appl. 103 (1) (2003) 1-29. | Zbl | MR
[2] A. Asselah, F. Castell, Large deviations for Brownian motion in a random scenery, Probab. Theory Related Fields, in press, DOI:10.1007/s00440-003-0276-0. | Zbl | MR
[3] , , Mathematical models with exact renormalization for turbulent transport, Comm. Math. Phys. 131 (1990) 381-429. | Zbl | MR
[4] , , Mathematical models with exact renormalization for turbulent transport II, Comm. Math. Phys. 146 (1992) 139-204. | Zbl | MR
[5] , , Long-time tails in the parabolic Anderson model with bounded potential, Ann. Probab. 29 (2) (2001) 636-682. | Zbl | MR
[6] , Analyse fonctionnelle. Théorie et applications, Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris, 1983. | Zbl | MR
[7] , Transport properties of Gaussian velocity fields, in: Real and Stochastic Analysis. Probab. Stochastics Series, CRC, Boca Raton, FL, 1997, pp. 9-63. | Zbl | MR
[8] , , Homogenization for time dependent 2-D incompressible Gaussian flows, Ann. Appl. Probab. 7 (1) (1997) 265-279. | Zbl | MR
[9] , , Annealed large deviations for diffusions in a random Gaussian shear flow drift, Stochastic Process. Appl. 94 (2001) 171-197. | Zbl | MR
[10] , , The large deviation principle for hypermixing processes, Probab. Theory Related Fields 78 (4) (1988) 627-649. | Zbl | MR
[11] , , Large Deviations Techniques and Applications, Applications of Mathematics, vol. 38, Springer, New York, 1998. | Zbl | MR
[12] , , Asymptotic evaluation of certain Markov process expectations for large time, I, II, Comm. Pure Appl. Math. 28 (1975) 1-47, Comm. Pure Appl. Math. 28 (1975) 279-301. | Zbl | MR
[13] , , Asymptotics for the Wiener sausage, Comm. Pure Appl. Math. 28 (1975) 525-565. | Zbl | MR
[14] , , A martingale approach to homogenization of unbounded random flows, Ann. Probab. 25 (1997) 1872-1894. | Zbl | MR
[15] , , An invariance principle for diffusion in turbulence, Ann. Probab. 27 (2) (1999) 751-781. | Zbl | MR
[16] , , Turbulent diffusion in Markovian flows, Ann. Appl. Probab. 9 (3) (1999) 591-610. | Zbl | MR
[17] , , Fractional Brownian motion limit for a model of turbulent transport, Ann. Appl. Probab. 10 (2000) 1100-1120. | Zbl | MR
[18] , , Diffusive and nondiffusive limits of transport in nonmixing flows, SIAM J. Appl. Math. 62 (3) (2002) 909-923. | Zbl | MR
[19] , , Diffusion in turbulence, Probab. Theory Related Fields 105 (3) (1996) 279-334. | Zbl | MR
[20] , , Moment asymptotics for the continuous parabolic Anderson model, Ann. Appl. Probab. 10 (1) (2000) 192-217. | Zbl | MR
[21] , , , Almost sure asymptotics for the continuous parabolic Anderson model, Probab. Theory Related Fields 118 (4) (2000) 547-573. | Zbl | MR
[22] , , Parabolic problems for the Anderson model I. Intermittency and related topics, Comm. Math. Phys. 132 (1990) 613-655. | Zbl | MR
[23] , , Parabolic problems for the Anderson model II. Second order asymptotics ans structure of high peaks, Probab. Theory Related Fields 111 (1998) 17-55. | Zbl | MR
[24] , , Subtle statistical behavior in simple models for random advection-diffusion, J. Math. Sci. Univ. Tokyo 1 (1) (1994) 23-70. | Zbl | MR
[25] , , A limit theorem related to a new class of self-similar processes, Z. Wahrsch. Verw. Gebiete 50 (1) (1979) 5-25. | Zbl | MR
[26] , , On the superdiffusive behavior of passive tracer with a Gaussian drift, J. Statist. Phys. 108 (3-4) (2002) 647-668. | Zbl
[27] , , , Convection-diffusion equation with space-time ergodic random flow, Probab. Theory Related Fields 112 (2) (1998) 203-220. | Zbl | MR
[28] , , Is transport in porous media always diffusive? A counterexample, Water Resources Res. 16 (1980) 901-907.
[29] , , Phase transition of the principal Dirichlet eigenvalue in a scaled Poissonian potential, Probab. Theory Related Fields 119 (2001) 475-507. | Zbl | MR
[30] , , Annealed survival asymptotics for Brownian motion in a scaled Poissonian potential, Stochastic Process. Appl. 96 (2001) 191-211. | Zbl | MR
[31] , , Infinite volume asymptotics of the ground state energy in a scaled Poissonian potential, Ann. I.H. Poincaré-PR 38 (3) (2002) 253-284. | Zbl | MR | Numdam
[32] , Short-correlation approximation in models of turbulent diffusion, in: Stochastic Models in Geosystems, Minneapolis, MN, 1994, IMA Vol. Math. Appl., vol. 85, Springer, New York, 1997, pp. 313-352. | Zbl | MR
[33] , Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, vol. 30, Princeton University Press, Princeton, NJ, 1970. | Zbl | MR
[34] , Brownian Motion, Obstacles and Random Media, Springer Monographs in Mathematics, Springer, Berlin, 1998. | Zbl | MR
[35] , Sharper bounds for Gaussians and empirical processes, Ann. Probab. 22 (1) (1994) 28-76. | Zbl | MR
Cité par Sources :





