Limiting behavior of a diffusion in an asymptotically stable environment
Annales de l'I.H.P. Probabilités et statistiques, Volume 43 (2007) no. 1, p. 101-138
@article{AIHPB_2007__43_1_101_0,
     author = {Singh, Arvind},
     title = {Limiting behavior of a diffusion in an asymptotically stable environment},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     publisher = {Elsevier},
     volume = {43},
     number = {1},
     year = {2007},
     pages = {101-138},
     doi = {10.1016/j.anihpb.2006.01.003},
     zbl = {1123.60075},
     mrnumber = {2288272},
     language = {en},
     url = {http://www.numdam.org/item/AIHPB_2007__43_1_101_0}
}
Singh, Arvind. Limiting behavior of a diffusion in an asymptotically stable environment. Annales de l'I.H.P. Probabilités et statistiques, Volume 43 (2007) no. 1, pp. 101-138. doi : 10.1016/j.anihpb.2006.01.003. http://www.numdam.org/item/AIHPB_2007__43_1_101_0/

[1] J. Bertoin, Lévy processes, Cambridge Tracts in Math., vol. 121, Cambridge University Press, Cambridge, 1996. | MR 1406564 | Zbl 0861.60003

[2] J. Bertoin, On the first exit time of a completely asymmetric stable process from a finite interval, Bull. London Math. Soc. 28 (5) (1996) 514-520. | MR 1396154 | Zbl 0863.60068

[3] J. Bertoin, R.A. Doney, On conditioning a random walk to stay nonnegative, Ann. Probab. 22 (4) (1994) 2152-2167. | MR 1331218 | Zbl 0834.60079

[4] N.H. Bingham, C.M. Goldie, J.L. Teugels, Regular Variation, Encyclopedia Math. Appl., vol. 27, Cambridge University Press, Cambridge, 1989. | MR 1015093 | Zbl 0667.26003

[5] A.A. Borovkov, Large deviations probabilities for random walks in the absence of finite expectations of jumps, Probab. Theory Related Fields 125 (3) (2003) 421-446. | MR 1967023 | Zbl 1028.60021

[6] Th. Brox, A one-dimensional diffusion process in a Wiener medium, Ann. Probab. 14 (4) (1986) 1206-1218. | MR 866343 | Zbl 0608.60072

[7] D. Cheliotis, One-dimensional diffusion in an asymmetric random environment, Ann. Inst. H. Poincaré Probab. Statist., in press, available at, http://www.math.toronto.edu/dimitris. | Numdam | MR 2269235 | Zbl 1105.60077

[8] R.A. Doney, Conditional limit theorems for asymptotically stable random walks, Z. Wahrsch. Verw. Gebiete 70 (3) (1985) 351-360. | MR 803677 | Zbl 0573.60063

[9] P. Erdös, On the law of the iterated logarithm, Ann. of Math. (2) 43 (1942) 419-436. | MR 6630 | Zbl 0063.01264

[10] W. Feller, An Introduction to Probability Theory and its Applications, vol. II, John Wiley & Sons Inc., New York, 1966. | MR 210154 | Zbl 0138.10207

[11] C.C. Heyde, On large deviation probabilities in the case of attraction to a non-normal stable law, Sankhyā Ser. A 30 (1968) 253-258. | MR 240854 | Zbl 0182.22903

[12] Y. Hu, Z. Shi, The limits of Sinai's simple random walk in random environment, Ann. Probab. 26 (4) (1998) 1477-1521. | MR 1675031 | Zbl 0936.60088

[13] K. Itô, H.P. Mckean, Diffusion Processes and their Sample Paths, Grundlehren Math. Wiss., Band 125, Academic Press Inc., New York, 1965. | MR 199891 | Zbl 0285.60063

[14] J. Jacod, A.N. Shiryaev, Limit Theorems for Stochastic Processes, Grundlehren Math. Wiss., vol. 288, Springer-Verlag, Berlin, 1987. | MR 959133 | Zbl 0635.60021

[15] K. Kawazu, Y. Tamura, H. Tanaka, Localization of diffusion processes in one-dimensional random environment, J. Math. Soc. Japan 44 (3) (1992) 515-550. | MR 1167381 | Zbl 0761.60072

[16] S. Kochen, Ch. Stone, A note on the Borel-Cantelli lemma, Illinois J. Math. 8 (1964) 248-251. | Zbl 0139.35401

[17] M.R. Pistorius, On exit and ergodicity of the spectrally one-sided Lévy process reflected at its infimum, J. Theoret. Probab. 17 (1) (2004) 183-220. | MR 2054585 | Zbl 1049.60042

[18] B.A. Rogozin, Distribution of the first ladder moment and height, and fluctuations of a random walk, Teor. Veroyatnost. i Primenen. 16 (1971) 539-613. | MR 290473 | Zbl 0269.60053

[19] S. Schumacher, Diffusions with random coefficients, in: Particle Systems, Random Media and Large Deviations (Brunswick, Maine, 1984), Contemp. Math., vol. 41, Amer. Math. Soc., Providence, RI, 1985, pp. 351-356. | MR 814724 | Zbl 0572.60053

[20] Z. Shi, Sinai's walk via stochastic calculus, Survey paper, available at, http://www.proba.jussieu.fr/pageperso/zhan/preprints.html. | MR 2226845

[21] A.V. Skorohod, Limit theorems for stochastic processes with independent increments, Teor. Veroyatnost. i Primenen. 2 (1957) 145-177. | MR 94842 | Zbl 0097.13001

[22] V.M. Zolotarev, One-Dimensional Stable Distributions, Transl. Math. Monogr., vol. 65, Amer. Math. Soc., Providence, RI, 1986, (Translated from the Russian by H.H. McFaden, translation edited by Ben Silver). | MR 854867 | Zbl 0589.60015