Reversible distributions of multi-allelic Gillespie-Sato diffusion models
Annales de l'I.H.P. Probabilités et statistiques, Volume 40 (2004) no. 5, p. 569-597
@article{AIHPB_2004__40_5_569_0,
     author = {Handa, Kenji},
     title = {Reversible distributions of multi-allelic Gillespie-Sato diffusion models},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     publisher = {Elsevier},
     volume = {40},
     number = {5},
     year = {2004},
     pages = {569-597},
     doi = {10.1016/j.anihpb.2003.08.002},
     zbl = {1061.60079},
     language = {en},
     url = {http://www.numdam.org/item/AIHPB_2004__40_5_569_0}
}
Handa, Kenji. Reversible distributions of multi-allelic Gillespie-Sato diffusion models. Annales de l'I.H.P. Probabilités et statistiques, Volume 40 (2004) no. 5, pp. 569-597. doi : 10.1016/j.anihpb.2003.08.002. http://www.numdam.org/item/AIHPB_2004__40_5_569_0/

[1] R. Bürger, The Mathematical Theory of Selection, Recombination, and Mutation, Wiley, Chichester, 2000. | MR 1885085 | Zbl 0959.92018

[2] D.M. Cifarelli, E. Regazzini, Distribution functions of means of a Dirichlet process, Ann. Statist. 18 (1990) 429-442, Correction , Ann. Statist. 22 (1994) 1633-1634. | MR 1041402 | Zbl 0817.62004

[3] S.N. Ethier, T.G. Kurtz, Markov Processes: Characterization and Convergence, Wiley, New York, 1986. | MR 838085 | Zbl 0592.60049

[4] S.N. Ethier, T.G. Kurtz, Fleming-Viot processes in population genetics, SIAM J. Contr. Optim. 31 (1993) 345-386. | Zbl 0774.60045

[5] W.J. Ewens, Mathematical Population Genetics, Springer, Berlin, 1979. | MR 554616 | Zbl 0422.92011

[6] M. Fukushima, D. Stroock, Reversibility of solutions to martingale problems, in: Adv. Math. Suppl. Stud., vol. 9, Academic Press, Orlando, 1986, pp. 107-123. | MR 875449 | Zbl 0613.60066

[7] J.H. Gillespie, Natural selection for within-generation variance in offspring number, Genetics 76 (1974) 601-606. | MR 395917

[8] A. Guionnet, B. Zegarlinski, Lectures on logarithmic Sobolev inequalities, in: Séminaire de Probabilités XXXVI, Lecture Notes in Math., vol. 1801, Springer, Berlin, 2003, pp. 1-134. | Numdam | MR 1971582 | Zbl 02046374

[9] P.R. Halmos, Measure Theory, Graduate Texts in Mathematics, vol. 18, Springer, New York, 1974. | Zbl 0283.28001

[10] K. Handa, Quasi-invariant measures and their characterization by conditional probabilities, Bull. Sci. Math. 125 (2001) 583-604. | MR 1869992 | Zbl 0996.28006

[11] K. Handa, Quasi-invariance and reversibility in the Fleming-Viot process, Probab. Theory Related Fields 122 (2002) 545-566. | MR 1902190 | Zbl 0995.60048

[12] R. Holley, D. Stroock, Simulated annealing via Sobolev inequalities, Comm. Math. Phys. 115 (1988) 553-569. | MR 933455 | Zbl 0643.60092

[13] N. Ikeda, S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland/Kodansha, Amsterdam/Tokyo, 1989. | MR 1011252 | Zbl 0684.60040

[14] A.N. Kolmogoroff, Zur Umkehrbarkeit der statistischen Naturgesetze, Math. Ann. 113 (1937) 766-772. | MR 1513121 | Zbl 0015.26004

[15] B. Levikson, The age distribution of Markov processes, J. Appl. Probab. 14 (1977) 492-506. | MR 465273 | Zbl 0389.60049

[16] Z. Li, T. Shiga, L. Yao, A reversibility problem for Fleming-Viot processes, Elect. Comm. Probab. 4 (1999) 71-82. | MR 1711591 | Zbl 0926.60043

[17] M. Nagasawa, T. Maruyama, An application of time reversal of Markov processes to a problem of population genetics, Adv. Appl. Probab. 11 (1979) 457-478. | MR 533054 | Zbl 0406.60070

[18] E. Nelson, The adjoint Markoff process, Duke Math. J. 25 (1958) 671-690. | MR 101555 | Zbl 0084.13402

[19] K. Sato, Convergence to a diffusion of a multi-allelic model in population genetics, Adv. Appl. Probab. 10 (1978) 538-562. | MR 499213 | Zbl 0397.60067

[20] S. Sawyer, On the past history of an allele now known to have frequency p, J. Appl. Probab. 14 (1977) 439-450. | MR 504055 | Zbl 0373.92013

[21] T. Shiga, Diffusion processes in population genetics, J. Math. Kyoto Univ. 21 (1981) 133-151. | MR 606316 | Zbl 0455.92005

[22] T. Shiga, A certain class of infinite-dimensional diffusion processes arising in population genetics, J. Math. Soc. Japan 39 (1987) 17-25. | MR 867984 | Zbl 0625.60095

[23] T. Shiga, Multi-allelic Gillespie-Sato diffusion models and their extension to infinite allelic ones, in: Kimura M., Kallianpur G., Hida T. (Eds.), Stochastic Methods in Biology (Nagoya, 1985), Lecture Notes in Biomath., vol. 70, Springer, Berlin, 1987, pp. 87-99. | MR 893638 | Zbl 0639.92009

[24] T. Shiga, A stochastic equation based on a Poisson system for a class of measure-valued diffusion processes, J. Math. Kyoto Univ. 30 (1990) 245-279. | MR 1068791 | Zbl 0751.60044

[25] W. Stannat, On the validity of the log-Sobolev inequality for symmetric Fleming-Viot operators, Ann. Probab. 28 (2000) 667-684. | MR 1782270 | Zbl 1044.60037

[26] N. Tsilevich, A. Vershik, M. Yor, Distinguished properties of the gamma process, and related topics, Prépublication du Laboratoire de Probabilités et Moèles Aléatoires No. 575, 2000, available at , http://xxx.lanl.gov/ps/math.PR/0005287.

[27] N. Tsilevich, A. Vershik, M. Yor, An infinite-dimensional analogue of the Lebesgue measure and distinguished properties of the gamma process, J. Funct. Anal. 185 (2001) 274-296. | MR 1853759 | Zbl 0990.60053

[28] G.A. Watterson, Reversibility and the age of an allele, I, Moran's infinitely many neutral alleles model, Theoret. Population Biology 10 (1976) 239-253. | MR 475994 | Zbl 0351.92015

[29] G.A. Watterson, Reversibility and the age of an allele, II, Two-allele models, with selection and mutation, Theoret. Population Biology 12 (1977) 179-196. | MR 475995 | Zbl 0444.92007

[30] S. Wright, Adaptation and selection, in: Jepson G.L., Mayr E., Simpson G.G. (Eds.), Genetics, Paleontology, and Evolution, Princeton University, Princeton, NJ, 1949, pp. 365-389.