@article{AIHPB_2003__39_1_95_0,
author = {Vayatis, Nicolas},
title = {Exact rates in {Vapnik-Chervonenkis} bounds},
journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
pages = {95--119},
year = {2003},
publisher = {Elsevier},
volume = {39},
number = {1},
zbl = {1020.60010},
language = {en},
url = {https://www.numdam.org/item/AIHPB_2003__39_1_95_0/}
}
Vayatis, Nicolas. Exact rates in Vapnik-Chervonenkis bounds. Annales de l'I.H.P. Probabilités et statistiques, Tome 39 (2003) no. 1, pp. 95-119. https://www.numdam.org/item/AIHPB_2003__39_1_95_0/
[1] , Probability inequalities for empirical processes and a law of the iterated logarithm, Ann. Probab. 4 (1984) 1041-1067. | Zbl | MR
[2] R. Azencott, Communication for the fifty years of the Department of Mathematics at Brown University (USA), 1996.
[3] , , , A sharp concentration inequality with applications, Random Structures and Algorithms 16 (3) (2000) 277-292. | Zbl | MR
[4] , , Large Deviations Techniques and Applications, Springer, 1998. | Zbl | MR
[5] , Bounds for the uniform deviation of empirical measures, J. Multivariate Anal. 12 (1982) 72-79. | Zbl | MR
[6] , , , A Probabilistic Theory of Pattern Recognition, Springer, 1996. | Zbl | MR
[7] , A course on empirical processes, in: (Ed.), Ecole d'Eté de Probabilités de Saint-Flour XII - 1982, Lecture Notes in Mathematics, 1097, Springer-Verlag, 1982, pp. 1-142. | Zbl | MR
[8] , , , Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator, Ann. Math. Statist. 27 (1956) 642-669. | Zbl | MR
[9] , , On the central limit theorem for empirical processes, Ann. Probab. 12 (1984) 929-989. | Zbl | MR
[10] , Sphere packing numbers for subsets of the Boolean n-cube with bounded Vapnik-Chervonenkis dimension, J. Combin. Theory Series A 69 (1995) 217-232. | Zbl
[11] , Probability inequalities for sums of bounded random variables, J. Amer. Statist. Assoc. 58 (1963) 13-30. | Zbl | MR
[12] , On large deviations of the empirical d.f. of vector chance variables and a law of the iterated logarithm, Pacific J. Math. 11 (1961) 649-660. | Zbl | MR
[13] , , Probability in Banach Spaces, Springer-Verlag, 1992. | Zbl | MR
[14] , Improved upper bounds for probabilities of uniform deviations, Statist. Probab. Lett. 25 (1995) 71-77. | Zbl | MR
[15] , Rates of convergence in the central limit theorem for empirical processes, Annales de l'Institut Henri Poincaré 22 (4) (1986) 381-423. | Zbl | MR | Numdam
[16] , The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality, Ann. Probab. 18 (1990) 1269-1283. | Zbl
[17] , , Vapnik-Chervonenkis bounds for generalization, J. Phys. A: Math. Gen. 26 (1993) 2211-2223. | Zbl
[18] , Convergence of Stochastic Processes, Springer-Verlag, 1984. | Zbl | MR
[19] , Empirical Processes: Theory and Applications, NSF-CBMS Regional Conference Series in Probability and Statistics, 2, Institute of Mathematical Statistics, 1991. | Zbl | MR
[20] E. Rio, Inégalités de concentration pour les processus empiriques de classes de parties, Probab. Theory Related Fields (2000), to appear. | Zbl | MR
[21] , Sharper bounds for Gaussian and empirical processes, Ann. Probab. 22 (1) (1994) 28-76. | Zbl | MR
[22] , , Weak Convergence and Empirical Processes, Springer, 1996. | Zbl | MR
[23] , Estimation of Dependencies on the Basis of Empirical Data, Springer, 1982.
[24] , The Nature of Statistical Learning Theory, Springer, 1995. | Zbl | MR
[25] , Statistical Learning Theory, Wiley-Interscience, 1998. | Zbl | MR
[26] , , On the uniform convergence of relative frequencies of events to their probabilities, Theory Probab. Appl. 16 (1971) 264-280. | Zbl
[27] , , Necessary and sufficient conditions for the uniform convergence of the means to their expectations, Theory Probab. Appl. 26 (1981) 532-555. | Zbl | MR
[28] , , , Measuring the VC-dimension of a learning machine, Neural Comput. 6 (1994) 851-876.
[29] N. Vayatis, Inégalités de Vapnik-Chervonenkis et mesures de complexité, Ph.D. thesis, Ecole Polytechnique, 2000, in English.
[30] , Large deviations, moderate deviations and LIL for empirical processes, Ann. Probab. 22 (1) (1994) 17-27. | Zbl | MR






