Strong law of large numbers for the interface in ballistic deposition
Annales de l'I.H.P. Probabilités et statistiques, Volume 36 (2000) no. 6, p. 691-736
@article{AIHPB_2000__36_6_691_0,
     author = {Sepp\"al\"ainen, Timo},
     title = {Strong law of large numbers for the interface in ballistic deposition},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     publisher = {Gauthier-Villars},
     volume = {36},
     number = {6},
     year = {2000},
     pages = {691-736},
     zbl = {0972.60097},
     mrnumber = {1797390},
     language = {en},
     url = {http://www.numdam.org/item/AIHPB_2000__36_6_691_0}
}
Seppäläinen, Timo. Strong law of large numbers for the interface in ballistic deposition. Annales de l'I.H.P. Probabilités et statistiques, Volume 36 (2000) no. 6, pp. 691-736. http://www.numdam.org/item/AIHPB_2000__36_6_691_0/

[1] Bahadoran C., Hydrodynamical limit for spatially heterogeneous simple exclusion process, Probab. Theory Related Fields 110 (1998) 287-331. | MR 1616563 | Zbl 0929.60082

[2] Benjamini I., Ferrari P., Landim C., Asymmetric conservative processes with random rates, Stochastic Process. Appl. 61 (1996) 181-204. | MR 1386172 | Zbl 0849.60093

[3] Crandall M.G., Evans L.C., Lions P.L., Some properties of viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 282 (1984) 487-502. | MR 732102 | Zbl 0543.35011

[4] Crandall M.G., Lions P.L., Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277 (1983) 1-42. | MR 690039 | Zbl 0599.35024

[5] De Masi A., Presutti E., Mathematical Methods for Hydrodynamic Limits, Lecture Notes in Mathematics, Vol. 1501, Springer, Berlin, 1991. | MR 1175626 | Zbl 0754.60122

[6] Durrett R., Ten lectures on particle systems, in: Lecture Notes in Mathematics, Vol. 1608, Springer, 1995, pp. 97-201 (Saint-Flour, 1993). | MR 1383122 | Zbl 0840.60088

[7] Durrett R., Liggett T., The shape of the limit set in Richardson's growth model, Ann. Probab. 9 (1981) 186-193. | MR 606981 | Zbl 0457.60083

[8] Evans L.C., Partial Differential Equations, American Mathematical Society, 1998. | MR 1625845 | Zbl 0902.35002

[9] Griffeath D., Additive and Cancellative Interacting Particle Systems, Lecture Notes in Mathematics, Vol. 724, Springer, 1979. | MR 538077 | Zbl 0412.60095

[10] Grimmett G., Kesten H., First-passage percolation, network flows and electrical resistances, Z. Wahrsch. Verw. Gebiete 66 (1984) 335-366. | MR 751574 | Zbl 0525.60098

[11] Harris T.E., Nearest-neighbor Markov interaction processes on multidimensional lattices, Adv. Math. 9 (1972) 66-89. | MR 307392 | Zbl 0267.60107

[12] Ishii H., Uniqueness of unbounded viscosity solutions of Hamilton-Jacobi equations, Indiana Univ. Math. J. 33 (1984) 721-748. | MR 756156 | Zbl 0551.49016

[13] Kesten H., Aspects of first-passage percolation, in: Lecture Notes in Mathematics, Vol. 1180, Springer, 1986, pp. 125-264. | MR 876084 | Zbl 0602.60098

[14] Kesten H., On the speed of convergence in first-passage percolation, Ann. Appl. Probab. 3 (1993) 296-338. | MR 1221154 | Zbl 0783.60103

[15] Kipnis C., Landim C., Scaling Limits of Interacting Particle Systems, Grundlehren der mathematischen Wissenschaften, Vol. 320, Springer, Berlin, 1999. | MR 1707314 | Zbl 0927.60002

[16] Krug J., Meakin P., Microstructure and surface scaling in ballistic deposition at oblique incidence, Physical Review A 40 (1989) 2064-2077.

[17] Krug J., Meakin P., Columnar growth in oblique incidence ballistic deposition: Faceting, noise reduction, and mean-field theory, Physical Review A 43 (1991) 900-919.

[18] Krug J., Spohn H., Kinetic roughening of growing surfaces, in: Godrèche C. (Ed.), Solids far from Equilibrium, Cambridge University Press, 1991, pp. 479-582.

[19] Liggett T.M., Interacting Particle Systems, Springer, New York, 1985. | MR 776231 | Zbl 0559.60078

[20] Meakin P., Ramanlal P., Sander L.M., Ball R.C., Ballistic deposition on surfaces, Physical Review A 34 (1986) 5091-5103.

[21] Rezakhanlou F., Continuum limit for some growth models, Preprint, 1999. | MR 1921440

[22] Rockafellar R.T., Convex Analysis, Princeton University Press, 1970. | MR 274683 | Zbl 0193.18401

[23] Rost H., Non-equilibrium behaviour of a many particle process: Density profile and local equilibrium, Z. Wahrsch. Verw. Gebiete 58 (1981) 41-53. | MR 635270 | Zbl 0451.60097

[24] Seppäläinen T., Exact limiting shape for a simplified model of first-passage percolation on the plane, Ann. Probab. 26 (1998) 1232-1250. | MR 1640344 | Zbl 0935.60093

[25] Seppäläinen T., Coupling the totally asymmetric simple exclusion process with a moving interface (I Escola Brasileira de Probabilidade, IMPA, Rio de Janeiro, 1997), Markov Process. Related Fields 4 (1998) 593-628. | MR 1677061 | Zbl 0922.60094

[26] Seppäläinen T., Existence of hydrodynamics for the totally asymmetric simple K-exclusion process, Ann. Probab. 27 (1999) 361-415. | MR 1681094 | Zbl 0947.60088

[27] Seppäläinen T., Krug J., Hydrodynamics and platoon formation for a totally asymmetric exclusion model with particlewise disorder, J. Statist. Phys. 95 (1999) 529-571. | MR 1700871 | Zbl 0964.82041

[28] Smythe R.T., Wierman J.C., First-passage percolation on the square lattice, Lecture Notes in Mathematics, Vol. 671, Springer, 1978. | MR 513421 | Zbl 0379.60001

[29] Spohn H., Large Scale Dynamics of Interacting Particles, Springer, Berlin, 1991. | Zbl 0742.76002

[30] Talagrand M., Concentration of measure and isoperimetric inequalities in product spaces, Inst. Hautes Études Sci. Publ. Math. 81 (1995) 73-205. | Numdam | MR 1361756 | Zbl 0864.60013