Weak convergence for empirical processes of associated sequences
Annales de l'I.H.P. Probabilités et statistiques, Volume 36 (2000) no. 5, p. 547-567
@article{AIHPB_2000__36_5_547_0,
     author = {Louhichi, Sana},
     title = {Weak convergence for empirical processes of associated sequences},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     publisher = {Gauthier-Villars},
     volume = {36},
     number = {5},
     year = {2000},
     pages = {547-567},
     zbl = {0968.60019},
     mrnumber = {1792655},
     language = {en},
     url = {http://www.numdam.org/item/AIHPB_2000__36_5_547_0}
}
Louhichi, Sana. Weak convergence for empirical processes of associated sequences. Annales de l'I.H.P. Probabilités et statistiques, Volume 36 (2000) no. 5, pp. 547-567. http://www.numdam.org/item/AIHPB_2000__36_5_547_0/

[1] Andrews D.W.K., Pollard D., An introduction to functional central limit theorems for dependent stochastic processes, Int. Stat. Rev. 62 (1994) 119-132. | Zbl 0834.60033

[2] Billingsley P., Probability and Measure, Wiley, New York, 1968.

[3] Bradley R.C., Basic properties of strong mixing conditions, in: Eberlein E., Taqqu M.S. (Eds.), Dependence in Probability and Statistics, Birkhäuser, Boston, 1986, pp. 165-192. | MR 899990 | Zbl 0603.60034

[4] Burton R.M., Dabrowski A.R., Dehling H., An invariance principle for weakly associated random variables, Stoch. Proc. Appl. 23 (1986) 301-306. | MR 876052 | Zbl 0611.60028

[5] Doukhan P., Mixing: Properties and Examples, Lecture Notes in Statist., Vol. 85, Springer-Verlag, Berlin, 1994. | MR 1312160 | Zbl 0801.60027

[6] Doukhan P., Massart P., Rio E., Invariance principle for the empirical measure of a weakly dependent process, Ann. I.H.P. 31 (2) (1995) 393-427. | Numdam | MR 1324814 | Zbl 0817.60028

[7] Esary J., Proschan F., Walkup D., Association of random variables with applications, Ann. Math. Stat. 38 (1967) 1466-1476. | MR 217826 | Zbl 0183.21502

[8] Giraitis L., Surgailis D., A central limit theorem for the empirical process of a long memory linear sequence, Preprint, 1994.

[9] Newman C.M., Asymptotic independence and limit theorems for positively and negatively dependent random variables, in: Tong Y.L. (Ed.), Inequalities in Statistics and Probability, I.M.S. Lecture Notes-Monograph Series, Vol. 5, 1984, pp. 127-140. | MR 789244

[10] Petrov V.V., Limit Theorems of Probability Theory: Sequences of Independent Random Variables, Clarendon Press, Oxford, 1995. | MR 1353441 | Zbl 0826.60001

[11] Pitt L., Positively correlated normal variables are associated, Ann. Probab. 10 (1982) 496-499. | MR 665603 | Zbl 0482.62046

[12] Pham T.D., Tran L.T., Some mixing properties of time series models, Stoch. Proc. Appl. 19 (1985) 297-303. | MR 787587 | Zbl 0564.62068

[13] Shao Q.M., Yu H., Weak convergence for weighted empirical processes of dependent sequences, Ann. Probab. 24 (4) (1996) 2052-2078. | MR 1415243 | Zbl 0874.60006

[14] Volkonski V.A., Rozanov Y.A., Some limit theorems for random functions, Theory Probab. Appl. 4 (1959) 178-197. | MR 121856 | Zbl 0092.33502

[15] Yu H., A Glivenko-Cantelli lemma and weak convergence for empirical processes of associated sequences, Probab. Theory Related Fields 95 (1993) 357-370. | MR 1213196 | Zbl 0792.60018