Comportement asymptotique du temps d'occupation du processus des sommes partielles
Annales de l'I.H.P. Probabilités et statistiques, Volume 29 (1993) no. 1, p. 57-81
@article{AIHPB_1993__29_1_57_0,
     author = {Akonom, Jacques},
     title = {Comportement asymptotique du temps d'occupation du processus des sommes partielles},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     publisher = {Gauthier-Villars},
     volume = {29},
     number = {1},
     year = {1993},
     pages = {57-81},
     zbl = {0767.60069},
     mrnumber = {1204518},
     language = {fr},
     url = {http://www.numdam.org/item/AIHPB_1993__29_1_57_0}
}
Comportement asymptotique du temps d'occupation du processus des sommes partielles. Annales de l'I.H.P. Probabilités et statistiques, Volume 29 (1993) no. 1, pp. 57-81. http://www.numdam.org/item/AIHPB_1993__29_1_57_0/

[1] J. Akonom, Processus transformés d'un ARIMA ou d'un processus de Wiener. Problèmes d'estimation, Thèse, Univ. de Lille-1, 1988.

[2] A.N. Borodin, On the Character of Convergence to Brownian Local Time, Probability Theory Rel. Fields, vol. 72, (I), 1986, p. 231-250 et (II), 1986, p.251-277. | MR 836277 | Zbl 0572.60079 | Zbl 0572.60078

[3] L. Breiman, Probability, Reading Mass, Addison Wesley, 1968. | MR 229267 | Zbl 0174.48801

[4] M. Csörgö et P. Révész, Three Strong Approximations of the Local Time of a Wiener Process and Their Applications to Invariance in Colloquia Math. Soc. Janos Bolyai, 36, Limit Theorems in Probab. and Statistics Veszprém (Hungary), 1984, p. 223-254. | MR 807563 | Zbl 0567.60075

[5] M. Csörgö et P. Révész, On Strong Invariance for Local Times of Partial Sums, Stochastic Processes and their Appl., vol. 20, 1985, p. 59-84. | MR 805116 | Zbl 0582.60073

[6] M. Csörgo et P. Révész, On the Stability of the Local Time of a Symetric Random Walk, Acta Sci. Math., vol. 48, 1985, p. 85-96. | MR 810868 | Zbl 0586.60060

[7] U. Einmahl, Extensions of Results of Komlós, Major and Tusnády, Multivariate Analysis, vol. 28, 1989, p. 20-68. | MR 996984 | Zbl 0676.60038

[8] W. Feller, An Introduction to Probability Theory and its Applications, Wiley, New York, 2e éd., 1957. | MR 88081 | Zbl 0077.12201

[9] B.V. Gnedenko, Un théorème limite local pour les densités, Dokl. Akad. Nank. S.S.S.R., vol. 95, 1954. | Zbl 0055.36602

[10] H. Kesten, An Iterated Logarithm Law for Local Time, Duke Math. J., vol. 32, 1965, p. 447-456. | MR 178494 | Zbl 0132.12701

[11] F. Knight, Essentials of Brownian Motion and Diffusion, Math. Surveys, vol. 18, A.M.S., 1981. | MR 613983 | Zbl 0458.60002

[12] Komlós, Major et Tusnády, An Approximation of Partial Sums of Independent R.V.'s and Sample D.F., Z. Wahrsch. verw. Gebiete, vol. 32, 1975, p. 111-131 et 34, 1976, 33-58. | Zbl 0308.60029

[13] P. Lévy, Processus stochastiques et mouvement brownien, Gauthier-Villars, Paris, 1948. | MR 190953 | Zbl 0034.22603

[14] P. Major, The Approximation of Partial Sums of Independent R.V.'s, Z. Wahrsch. verw. Gebiete, vol. 35, 1976, p. 213-220. | MR 415743 | Zbl 0338.60031

[15] H.P. Mckean, Hôlder Condition for Brownian Motion Paths, J. Math. Kyoto Univ., vol. 1, 1962, p. 195-210. | MR 146902 | Zbl 0121.13101

[16] E. Perkins, Weak Invariance Principles for Local Times, Z. Wahrsch. verw. Gebiete, vol. 60, 1982, p. 437-451. | MR 665738 | Zbl 0465.60065

[17] V.V. Petrov, Sums of Independent Random Variables, Springer-Verlag, Berlin, New York, 1975. | MR 388499 | Zbl 0322.60042

[18] A. Renyi, Calcul des probabilités, Dunod, Paris, 1966. | MR 202161 | Zbl 0141.14702

[19] P. Révész, Local Time and Invariance, Lecture Notes in Math., n° 861, Springer-Verlag, Berlin, Heidelberg, New York, 1981. | MR 655268 | Zbl 0456.60029

[20] P. Révész, A Strong Invariance Principle of the Local Time of R.V.'s with Continuous Distributions, Stud. Sci. Math. Hung., vol. 16, 1981, p. 219-228. | MR 703659 | Zbl 0525.60041

[21] H.F. Trotter, A Property of Brownian Motion Paths, Ill. J. Math., vol. 2, 1958, p. 425-433. | MR 96311 | Zbl 0117.35502