@article{AIHPA_1996__65_2_175_0, author = {Tom\'e, Wolfgang}, title = {A representation independent propagator. {II} : {Lie} groups with square integrable representations}, journal = {Annales de l'I.H.P. Physique th\'eorique}, pages = {175--222}, publisher = {Gauthier-Villars}, volume = {65}, number = {2}, year = {1996}, mrnumber = {1411266}, zbl = {0888.22019}, language = {en}, url = {http://www.numdam.org/item/AIHPA_1996__65_2_175_0/} }
TY - JOUR AU - Tomé, Wolfgang TI - A representation independent propagator. II : Lie groups with square integrable representations JO - Annales de l'I.H.P. Physique théorique PY - 1996 SP - 175 EP - 222 VL - 65 IS - 2 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPA_1996__65_2_175_0/ LA - en ID - AIHPA_1996__65_2_175_0 ER -
%0 Journal Article %A Tomé, Wolfgang %T A representation independent propagator. II : Lie groups with square integrable representations %J Annales de l'I.H.P. Physique théorique %D 1996 %P 175-222 %V 65 %N 2 %I Gauthier-Villars %U http://www.numdam.org/item/AIHPA_1996__65_2_175_0/ %G en %F AIHPA_1996__65_2_175_0
Tomé, Wolfgang. A representation independent propagator. II : Lie groups with square integrable representations. Annales de l'I.H.P. Physique théorique, Volume 65 (1996) no. 2, pp. 175-222. http://www.numdam.org/item/AIHPA_1996__65_2_175_0/
[1] Unitary representations of the affine group, J. Math. Phys., Vol. 9, 1968, pp. 206-211. | MR | Zbl
and ,[2] Continuous representation theory using the affine group, J. Math. Phys., Vol. 10, 1969, pp. 2267-2275. | MR | Zbl
and ,[3] Theory of Group Representations and Applications," second revised edition, World Scientific, Singapore, 1986. | MR | Zbl
and , "[4] The Rigged Hilbert Space and Quantum Mechanics", Springer Verlag, Berlin 1978. | MR
, "[5] Distributions sur un groupe localement compact et applications à l'étude des représentations des groupes p-adiques, Bull. Soc. Math. France, Vol. 89, 1961, pp. 43-75. | Numdam | MR | Zbl
,[6] Square-integrable representations of non-unimodular groups, Bull. Austral. Math. Soc., Vol. 15, 1976, pp. 1-12. | MR | Zbl
,[7] C*-Algebras", North Holland, Amsterdam, 1977. | MR | Zbl
, "[8] On the regular representation of a nonunimodular locally compact group, J. Funct. Anal., Vol. 21, 1976, pp. 209-243. | MR | Zbl
and ,[9] Linear Operators", Part 1, Wiley, New York, 1958.
and , "[10] Simple facts about analytic vectors and integrability, Ann. scient. Éc. Norm. Sup., Vol. 5, 1972, pp. 423-434. | Numdam | MR | Zbl
, , and ,[11] Unitary representations of the group of linear transformations of the straight line [russ.], Doklady Akad. Nauk SSSR, Vol. 55, 1947, pp. 571-574. | MR | Zbl
and ,[12] Local Quantum Physics: Fields, Particles, Algebras", Springer Verlag, Berlin, 1992. | MR | Zbl
, "[13] Coherent states for n-dimensional Euclidean groups E(n) and their application, J. Math. Phys., Vol. 32, 1991, pp. 607-620. | MR | Zbl
and ,[14] Path integrals, Acta Phys. Austriaca Suppl., Vol. XXII, 1980, pp. 3-49. | MR
,[15] Path Integrals for Affine Variables." In: J. P. Antoine and E. Tirapequi (eds.), Functional Integration Theory and Applications, Proceedings, pp. 101-119, Plenum, New York, 1980. | MR | Zbl
, "[16] The universal propagator." In: D. Han, Y. S. Kim and W. W. Zachary (eds.), Workshop on Harmonic Oscillators, Proceedings, Maryland, USA, 1992, pp. 19- 28, NASA Publication 3197, 1993.
, "[17] Coherent States: Applications in Physics and Mathematical Physics", World Scientific, Singapore, 1985. | MR | Zbl
and , "[18] The universal propagator for affine [or SU(1,1)] coherent states, J. Math. Phys., Vol. 33, 1992, pp. 3700-3709. | MR | Zbl
and ,[19] General Eigenfunction Expansions and Unitary Representations of Topological Groups", PWN-Polish Scientific Publishers, Warsaw, 1968. | MR | Zbl
, "[20] Hilbertsche Raume mit Kernfunktion", Springer Verlag, Berlin, 1962. | MR | Zbl
, "[21] Analytic vectors, Ann. of Math., Vol. 70, 1959, pp. 572-615. | MR | Zbl
,[22] Techniques and Applications of Path Integration", Wiley, New York, 1981. | MR | Zbl
, "[23] A representation independent propagator. I. Compact Lie groups, Ann. Inst. Henri Poincaré, Theor. Phys., Vol. 63, 1995, pp. 1-40. | Numdam | MR | Zbl
,[24] New integral equations for the quartic anharmonic oscillator, Nuovo Cimento Lett., Vol. 9, 1974, pp. 533-536.
,[25] Weyl quantization of anharmonic oscillators, J. Math. Phys., Vol. 16, 1975, pp. 1034-1043. | MR
,[26] The universal propagator for E(2) coherent states, Commun. Theor. Phys., Vol. 5 (to appear). | MR
and ,[27] Large N limits as classical mechanics, Rev. Mod. Phys., Vol. 54, 1982, pp. 407-435. | MR
,