Maximal violation of Bell's inequalities for algebras of observables in tangent spacetime regions
Annales de l'I.H.P. Physique théorique, Volume 49 (1988) no. 2, p. 215-243
@article{AIHPA_1988__49_2_215_0,
     author = {Summers, Stephen J. and Werner, Reinhard},
     title = {Maximal violation of Bell's inequalities for algebras of observables in tangent spacetime regions},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     publisher = {Gauthier-Villars},
     volume = {49},
     number = {2},
     year = {1988},
     pages = {215-243},
     zbl = {0673.46046},
     mrnumber = {984150},
     language = {en},
     url = {http://www.numdam.org/item/AIHPA_1988__49_2_215_0}
}
Summers, Stephen J.; Werner, Reinhard. Maximal violation of Bell's inequalities for algebras of observables in tangent spacetime regions. Annales de l'I.H.P. Physique théorique, Volume 49 (1988) no. 2, pp. 215-243. http://www.numdam.org/item/AIHPA_1988__49_2_215_0/

[1] C. D'Antoni and R. Longo, Interpolation by type I factors and the flip automorphism. J. Funct. Anal., t. 51, 1983, p. 361-371. | MR 703083 | Zbl 0535.46036

[2] C. D'Antoni, D. Buchholz and K. Fredenhagen, The universal structure of local algebras. Commun. Math. Phys., t. 111, 1987, p. 123-135. | MR 896763 | Zbl 0645.46048

[3] H. Araki, Local quantum theory, I. In: Local Quantum Theory, ed. R. Jost, Academic Press, New York, 1969.

[4] H. Araki, Asymptotic ratio set and property L'λ. Publ. RIMS, Kyoto Univ., t. 6, 1970-1071, p. 443-460. | MR 308800 | Zbl 0231.46100

[5] H. Araki and E.J. Woods, A classification of factors. Publ. RIMS, Kyoto Univ., t. 4, 1968, p. 51-130. | MR 244773 | Zbl 0206.12901

[6] D. Buchholz, Product states for local algebras. Commun. Math. Phys., t. 36, 1974, p. 287-304. | MR 345546 | Zbl 0289.46050

[7] D. Buchholz and K. Fredenhagen, Locality and the structure of particle states. Commun. Math. Phys., t. 84, 1982, p. 1-54. | MR 660538 | Zbl 0498.46061

[8] D. Buchholz and E.H. Wichmann, Causal independence and the energy-level density of states in local quantum field theory. Commun. Math. Phys., t. 106, 1986, p. 321-344. | MR 855315 | Zbl 0626.46064

[9] D. Buchholz, S. Doplicher and R. Longo, On Noether's theorem in quantum field theory. Ann. Phys., t. 170, 1986, p. 1-17. | MR 848392 | Zbl 0609.46037

[10] B.S. Cirel'Son, Quantum generalizations of Bell's inequalities. Lett. Math. Phys., t. 4, 1980, p. 93-100. | MR 577178

[11] A. Connes and E. Størmer, Homogeneity of the state space of factors of type III1. J. Funct. Anal., t. 28, 1978, p. 187-196. | MR 470689 | Zbl 0408.46048

[12] S. Doplicher, R. Haag and J.E. Roberts, Fields, observables and gauge transformations, I, II. Commun. Math. Phys., t. 13, 1969, p. 1-23 and t. 15, 1969, p. 173- 200. | MR 258394 | Zbl 0186.58205 | Zbl 0175.24704

[13] S. Doplicher and R. Longo, Standard and split inclusions of von Neumann algebras. Invent. Math., t. 75, 1984, p. 493-536. | MR 735338 | Zbl 0539.46043

[14] W. Driessler, Comments on lightlike translations and applications in relativistic quantum field theory. Commun. Math. Phys., t. 44, 1975, p. 133-141. | MR 416336 | Zbl 0306.46076

[15] W. Driessler, On the type of local algebras in quantum field theory. Commun. Math. Phys., t. 53, 1977, p. 295-297. | MR 473853 | Zbl 0348.46055

[16] W. Driessler, On the structure of fields and algebras on null planes, I, Local algebras. Acta Phys. Austr., t. 46, 1977, p. 63-96. | MR 468834

[17] W. Driessler, Duality and absence of locally generated superselection sectors for CCR-type algebras. Commun. Math. Phys., t. 70, 1979, p. 213-220. | MR 554492 | Zbl 0427.46047

[18] W. Driessler and S.J. Summers, Central decomposition of Poincaré-invariant nets of local field algebras and absence of spontaneous breaking of the Lorentz group. Ann. Inst. Henri Poincaré, t. A 43, 1985, p. 147-166. | Numdam | MR 817532 | Zbl 0609.47059

[19] W. Driessler and S.J. Summers, On the decomposition of relativistic quantum field theories into pure phases. Helv. Phys. Acta, t. 59, 1986, p. 331-348. | MR 845432

[20] W. Driessler, S.J. Summers and E.H. Wichmann, On the connection between quantum fields and von Neumann algebras of local operators. Commun. Math. Phys., t. 105, 1986, p. 49-84. | MR 847127 | Zbl 0595.46062

[21] J.-P. Eckmann and J. Fröhlich, Unitary equivalence of local algebras in the quasi-free representation. Ann. Inst. Henri Poincaré, t. A 20, 1974, p. 201-209. | Numdam | MR 400966 | Zbl 0287.46077

[22] J.D. Fabrey, Exponential representations of the canonical commutation relations. Commun. Math. Phys., t. 19, 1970, p. 1-30. | MR 272311 | Zbl 0197.26302

[23] K. Fredenhagen, On the modular structure of local algebras of observables. Commun. Math. Phys., t. 97, 1985, p. 79-89. | MR 782959 | Zbl 0582.46067

[24] J. Glimm and A. Jaffe, The λ(φ4)2 quantum field theory without cutoffs. III. The physical vacuum. Acta Math., t. 125, 1970, p. 204-267. | MR 269234

[25] R. Haag and D. Kastler, An algebraic approach to quantum field theory. J. Math. Phys., t. 5, 1964, p. 848-861. | MR 165864 | Zbl 0139.46003

[26] P.D. Hislop and R. Longo, Modular structure of the local algebras associated with the free massless scalar field theory. Commun. Math. Phys., t. 84, 1982, p. 71-85. | MR 660540 | Zbl 0491.46060

[27] P.D. Hislop, Conformal covariance, modular structure and duality for local algebras in free massless quantum field theories, preprint, University of California, 1987. | MR 965577 | Zbl 0644.46057

[28] L.J. Landau, On the violation of Bell's inequality in quantum theory. Phys. Lett., t. 120 A, 1987, p. 54-56. | MR 879718

[29] O.A. Nielsen, The asymptotic ratio set and direct integral decompositions of a von Neumann algebra. Can. J. Math., t. 23, 1971, p. 598-607. | MR 298433 | Zbl 0217.16902

[30] R.T. Powers, Representations of uniformly hyperfinite algebras and their associated von Neumann rings. Ann. Math., t. 86, 1967, p. 138-171. | MR 218905 | Zbl 0157.20605

[31] R.T. Powers, UHF algebras and their applications to representations of the anticommutation relations. In: Cargèse Lectures in Physics, Vol. 4, ed. D. Kastler, Gordon and Breach, New York, London, Paris, 1970.

[32] J.E. Roberts, Some applications of dilatation invariance to structural questions in the theory of local observables. Commun. Math. Phys., t. 37, 1974, p. 273-286. | MR 368650 | Zbl 0292.46031

[33] H. Roos, Independence of local algebras in quantum field theory. Commun. Math. Phys., t. 16, 1970, p. 238-246. | MR 266539 | Zbl 0197.26303

[34] S. Sakai, C*-Algebras and W*-Algebras. Springer-Verlag, New York, Berlin, Heidelberg, 1971. | MR 442701 | Zbl 0219.46042

[35] S. Schlieder, Einige Bemerkungen über Projektionsoperatoren. Commun. Math. Phys., t. 13, 1969, p. 216-225. | MR 250617 | Zbl 0179.58001

[36] R. Schrader, A Yukawa quantum field theory in two spacetime dimensions without cutoffs. Ann. Phys., t. 70, 1972, p. 412-457. | MR 302088

[37] R.F. Streater and A.S. Wightman, PCT, Spin and Statistics, And All That, New York, Benjamin, 1964. | MR 161603 | Zbl 0135.44305

[38] S.J. Summers, Normal product states for fermions and twisted duality for CCR- and CAR-type algebras with application to the Yukawa2 quantum field model. Commun. Math. Phys., t. 86, 1982, p. 111-141. | MR 678005 | Zbl 0505.46051

[39] S.J. Summers and R. Werner, The vacuum violates Bell's inequalities. Phys. Lett., t. 110 A, 1985, p. 257-259. | MR 803854

[40] S.J. Summers and R. Werner, Bell's inequalities and quantum field theory, I. General setting. J. Math. Phys., t. 28, 1987, p. 2440-2447. | MR 908015 | Zbl 0648.46066

[41] S.J. Summers and R. Werner, Bell's inequalities and quantum field theory, II. Bell's inequalities are maximally violated in the vacuum. J. Math. Phys., t. 28, 1987, p.2448-2456. | MR 908016 | Zbl 0648.46067

[42] S.J. Summers and R. Werner, Maximal violation of Bell's inequalities is generic in quantum field theory. Commun. Math. Phys., t. 110, 1987, p. 247-259. | MR 887998 | Zbl 0626.46056

[43] M. Takesaki, Theory of Operator Algebras, I. Springer-Verlag, New York, Berlin, Heidelberg, 1979. | Zbl 0436.46043

[44] M. Takesaki, Conditional expectations in von Neumann algebras. J. Funct. Anal., t. 9, 1972, p. 306-321. | MR 303307 | Zbl 0245.46089

[45] D. Testard, Asymptotic ratio set of von Neumann algebras generated by temperature states in statistical mechanics. Rep. Math. Phys., t. 12, 1977, p. 115-118. | MR 468970 | Zbl 0385.46039

[46] R. Werner, Local preparability of states and the split property in quantum field theory. Lett. Math. Phys., t. 13, 1987, p. 325-329. | MR 895295 | Zbl 0649.46063

[47] A.S. Wightman, La théorie quantique locale et la théorie quantique des champs. Ann. Inst. Henri Poincaré, t. A1, 1964, p. 403-420. | Numdam | MR 197086 | Zbl 0128.45803