Small random perturbations of infinite dimensional dynamical systems and nucleation theory
Annales de l'I.H.P. Physique théorique, Tome 44 (1986) no. 4, pp. 343-396.
@article{AIHPA_1986__44_4_343_0,
     author = {Cassandro, Marzio and Olivieri, E. and Picco, Pierre},
     title = {Small random perturbations of infinite dimensional dynamical systems and nucleation theory},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     pages = {343--396},
     publisher = {Gauthier-Villars},
     volume = {44},
     number = {4},
     year = {1986},
     zbl = {0598.35133},
     mrnumber = {850897},
     language = {en},
     url = {http://www.numdam.org/item/AIHPA_1986__44_4_343_0/}
}
Cassandro, M.; Olivieri, E.; Picco, P. Small random perturbations of infinite dimensional dynamical systems and nucleation theory. Annales de l'I.H.P. Physique théorique, Tome 44 (1986) no. 4, pp. 343-396. http://www.numdam.org/item/AIHPA_1986__44_4_343_0/

[1] W.G. Faris and G. Jona-Lasinio, Large fluctuations for a non linear heat equation with noise. J. Phys. A : Math. Gen., t. 15, 1982, p. 3025-3055. | MR 684578 | Zbl 0496.60060

[2] G. Parisi and Y.S. Wu, Scienta Sinica, t. 24, 1981, p. 483-496. | MR 626795

[3] J.L. Lebowitz and O. Penrose, Toward a rigorous molecular theory of metastability. In Fluctuation Phenomena. Studies in Statistical Mechanics, edited by J. L. Lebowitz and E. W. Montroll. Amsterdam, North Holland, 1979. | MR 578729

[4] J. Sewel, Stability Equilibrium and Metastability in Statistical Mechanics. Phys. Rep., t. 57, 1980, p. 307. | MR 556940

[5] M. Cassandro, A. Galves, E. Olivieri and M.E. Vares, Metastability behaviour of Stochastic Dynamics: a pathwise approach. J. Stat. Phys., t. 35, 1984, p. 603-634. | MR 749840 | Zbl 0591.60080

[6] A. Galves, E. Olivieri and M.E. Vares, Metastability for a class of dynamical systems subject to small random perturbations. Preprint I. H. E. S. Octobre 1984. | MR 905332

[7] A.D. Wentzel and M.L. Freidlin, On small random perturbations of dynamical systems, Russian Math. Survey, t. 25, 1, 1970, p. 1-55. Some problems concerning stability under small random perturbations. Theory of Probability and Appl., t. 17, 2, 1972, p. 269-283. | MR 267221 | Zbl 0297.34053

[8] M.L. Freidlin and A.D. Wentzel, Random perturbations of dynamical system. Springer Verlag. New-York, Berlin, Heidelberg, Tokyo, 1984. | MR 722136

[9] C.L. Thompson, Mathematical statistical mechanics. Princeton University, Press 1972. | Zbl 0244.60082

[10] T.H. Eisele and R.S. Ellis, Symmetry breaking and random waves for magnetic systems on a circle. Wahrscheinlichkeitstheorie Verw. Geb., t. 63, 1983, p 297-348. | MR 705628 | Zbl 0494.60097

[11] W.S. Loud, Periodic Solution of x'' + cx' + g(x) = ∈f(t). Memoirs of the American Mathematical Society, n° 31, 1959. | MR 107058 | Zbl 0085.30701

[12] N. Chafee and E. Infante, A bifurcation problem for a non linear parabolic equation. J. Applicable Anal., t. 4, 1974, p. 17-37. | MR 440205 | Zbl 0296.35046

[13] D. Henry, Geometric theory of Semilinear Parabolic equation. Lecture notes in Math., n° 840, Springer Verlag, Berlin, Heidelbérg, New York, 1981. | MR 610244 | Zbl 0456.35001

[14] T. Laetsch, Critical solutions of autonomous non linear boundary value problems. Indiana University. Math. Journal, t. 24, n° 7, 1975, p. 651-658. | Zbl 0314.34065

[15] H. Berestycki, Le nombre de solutions de certains problèmes semi-linéaires elliptiques. J. of Functional Analysis, t. 40, 1981, p. 1-29. | MR 607588 | Zbl 0452.35038

[16] E.A. Coddington and N. Levinson, Theory of ordinary differential equations. Mc Grawhill, New York, Toronto, London, 1955. | MR 69338 | Zbl 0064.33002

[17] R. Courant and D. Hilbert, Methods of Methematical Physics. t. 1. Intersciences, New York, 1953. | MR 65391 | Zbl 0051.28802