Lower bounds to Feynman integrals and class H n
Annales de l'I.H.P. Physique théorique, Volume 38 (1983) no. 1, pp. 37-47.
@article{AIHPA_1983__38_1_37_0,
     author = {Manoukian, Edward B.},
     title = {Lower bounds to {Feynman} integrals and class $H^n$},
     journal = {Annales de l'I.H.P. Physique th\'eorique},
     pages = {37--47},
     publisher = {Gauthier-Villars},
     volume = {38},
     number = {1},
     year = {1983},
     zbl = {0515.46076},
     mrnumber = {700698},
     language = {en},
     url = {http://www.numdam.org/item/AIHPA_1983__38_1_37_0/}
}
TY  - JOUR
AU  - Manoukian, Edward B.
TI  - Lower bounds to Feynman integrals and class $H^n$
JO  - Annales de l'I.H.P. Physique théorique
PY  - 1983
DA  - 1983///
SP  - 37
EP  - 47
VL  - 38
IS  - 1
PB  - Gauthier-Villars
UR  - http://www.numdam.org/item/AIHPA_1983__38_1_37_0/
UR  - https://zbmath.org/?q=an%3A0515.46076
UR  - https://www.ams.org/mathscinet-getitem?mr=700698
LA  - en
ID  - AIHPA_1983__38_1_37_0
ER  - 
%0 Journal Article
%A Manoukian, Edward B.
%T Lower bounds to Feynman integrals and class $H^n$
%J Annales de l'I.H.P. Physique théorique
%D 1983
%P 37-47
%V 38
%N 1
%I Gauthier-Villars
%G en
%F AIHPA_1983__38_1_37_0
Manoukian, Edward B. Lower bounds to Feynman integrals and class $H^n$. Annales de l'I.H.P. Physique théorique, Volume 38 (1983) no. 1, pp. 37-47. http://www.numdam.org/item/AIHPA_1983__38_1_37_0/

[1] E.B. Manoukian, J. Math. Phys., t. 19, 1978, p. 917; ibid., t. 21, 1980, p. 1662. | MR

[2] E.B. Manoukian, Nuovo Cimento, t. 57A, 1980, p. 377. | MR

[3] E.B. Manoukian, J. Math. Phys., t. 22, 1981. | MR

[4] J.P. Fink, J. Math. Phys., t. 9, 1968, p. 1389. | MR | Zbl

[5] E.B. Manoukian, J. Phys. G. Nucl. Phys., t. 82, p. 599.

[6] S. Weinberg, Phys. Rev., t. 118, 1960, p. 838. | MR | Zbl

[7] W. Zimmermann, Commun. Math. Phys., t. 11, 1968, p. 1. | MR

[8] D.A. Slavnov, Teoret. Mat. Fiz., t. 17, 1973, p. 169. | MR

[9] R.P. Halmos, Finite Dimensional Vector Spaces, Springer-Verlag, New York, 1974. | MR | Zbl

[10] W. Rudin, Real and Complex Analysis, McGraw-Hill, Inc. New-York, 1964; R.P. Halmos, Measure Theory, Springer-Verlag, New York, 1974. | MR | Zbl