On the harmonic analysis of the elastic scattering amplitude of two spinless particles at fixed momentum transfer
Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Volume 32 (1980) no. 2, pp. 109-123.
@article{AIHPA_1980__32_2_109_0,
     author = {Viano, G. A.},
     title = {On the harmonic analysis of the elastic scattering amplitude of two spinless particles at fixed momentum transfer},
     journal = {Annales de l'institut Henri Poincar\'e. Section A, Physique Th\'eorique},
     pages = {109--123},
     publisher = {Gauthier-Villars},
     volume = {32},
     number = {2},
     year = {1980},
     mrnumber = {580323},
     language = {en},
     url = {http://www.numdam.org/item/AIHPA_1980__32_2_109_0/}
}
TY  - JOUR
AU  - Viano, G. A.
TI  - On the harmonic analysis of the elastic scattering amplitude of two spinless particles at fixed momentum transfer
JO  - Annales de l'institut Henri Poincaré. Section A, Physique Théorique
PY  - 1980
SP  - 109
EP  - 123
VL  - 32
IS  - 2
PB  - Gauthier-Villars
UR  - http://www.numdam.org/item/AIHPA_1980__32_2_109_0/
LA  - en
ID  - AIHPA_1980__32_2_109_0
ER  - 
%0 Journal Article
%A Viano, G. A.
%T On the harmonic analysis of the elastic scattering amplitude of two spinless particles at fixed momentum transfer
%J Annales de l'institut Henri Poincaré. Section A, Physique Théorique
%D 1980
%P 109-123
%V 32
%N 2
%I Gauthier-Villars
%U http://www.numdam.org/item/AIHPA_1980__32_2_109_0/
%G en
%F AIHPA_1980__32_2_109_0
Viano, G. A. On the harmonic analysis of the elastic scattering amplitude of two spinless particles at fixed momentum transfer. Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Volume 32 (1980) no. 2, pp. 109-123. http://www.numdam.org/item/AIHPA_1980__32_2_109_0/

[1] H. Furstenberg, Translation, Invariant Cones of Functions on Semi-Simple Lie Groups. Bulletin American Math. Soc., t. 71, 1965, p. 271. | MR | Zbl

[2] C. Crönstrom and W.H. Klink, Generalized O(1, 2), Expansions of Multiparticle Amplitudes. Annals of Physics, t. 69, 1972, p. 218.

[3] W. Rühl, A Convolution Integral for Fourier Transforms on the Group SL(2, C), Communications Math. Phys., t. 10, 1968, p. 199. | MR | Zbl

[4] W. Rühl, The Lorentz Group and Harmonic Analysis, New York, Benjamin, 1970. | MR | Zbl

[5] H.D.I. Abarbanel and L.M. Saunders, Laplace Transforms and the Diagonalization of Bethe-Salpeter Equations for Absorptive Parts, Phys. Rev., D2, 1970, p. 711. | MR | Zbl

[6] H.D.I. Abarbanel and L.M. Saunders, Partial Diagonalization of Absorptive Part Equations by Laplace Transforms, Annals of Physics, t. 64, 1971, p. 254. | MR | Zbl

[7] C.E. Jones, F.E. Low and J.E. Young, Generalized O(2, 1), Expansion for Asymptotically Growing Amplitudes. Annals of Physics, t. 63, 1971, p. 476. | MR

[8] C.E. Jones, F.E. Low and J.E. Young, Generalized O(2, 1) Expansions for Asymptotically Growing Amplitudes II Space, Time Région. Annals of Physics, t. 70, 1972, p. 286. | MR

[9] C. Crönstrom, Generalized O(1, 2) Expansions of Multiparticle Amplitudes. The O(1,2) Laplace Transform. Annals of Physics, t. 78, 1973, p. 340.

[10] C. Crönstrom, O(1,2) Partial Diagonalization of Bethe-Salpeter Type Equations. Annals of Physics, t. 92, 1975, p. 262. | MR

[11] G.A. Viano, On the Geometrical Interpretation of the Harmonic Analysis of the Scattering Amplitude. Comm. Math. Phys., t. 26, 1972, p. 290. | MR

[12] L. Ehrenpreis, Fourier Analysis in Several Complex Variables, New York, Wiley Interscience Publishers, 1971, p. 383. | MR | Zbl

[13] N.J. Vilenkin, Special Functions and the Theory of Group Representations, Translations of Mathematical Monographs, vol. 22. American Mathematical Society, Providence Rhode Island, 1968. | MR | Zbl

[14] S. Helgason, a) Differential Geometry and Symmetric Spaces, New York, Academic Press, 1962, p. 405. b) Lie Groups and Symmetric Spaces. Battelle Rencontres (C. M. De Witt and J. A. Wheeler Editors), New York, Benjamin, 1968, p. 1. c) Harmonic Analysis in the Non-Euclidean Disk, Conference on Harmonic Analysis, Lecture Notes in Mathematics, Springer Verlag, 1971, p. 151. d) Functions on Symmetric Spaces, in Proceedings of Symposia in Pure Mathematics, vol. XXVI, 1973, p. 101. e) A duality for Symmetric Spaces with Applications to Group Representations. Advances in Mathematics, t. 5, 1970, p. 1. | MR | Zbl

[15] R. Nevanlinna, Analytic Functions, Springer, 1970, p. 7. | MR | Zbl

[16] A. Erdelyi Et Al., Higher Transcendental Functions (Batemann Manuscript Project), vol. I, Chapter III. New York, Mc Graw Hill. | Zbl

[17] H. Joss, Complex Angular Momentum and the Representations of the Poincaré Group with Space-Like Momentum. Lectures in Theoretical Physics (Boulder Summer School), VII A, 1964, p. 132.

[18] F.T. Hadjioannou, On the Use of the Imaginary-Mass Representations of the Poincaré Group in Scattering Amplitudes. Nuovo Cimento, XLIV A, no. 1, 1966, p. 185.

[19] I.M. Gel'Fand, M.I. Graev and N. Ya Vilenkin, Generalized Functions, Academic Press, vol. 5, 1966, p. 4. | Zbl

[20] V.N. Gribov, Partial Waves with Complex Angular Momenta and the Asymptotic Behaviour of the Scattering Amplitude. J. Exp. Theor. Phys., t. 14, 1962, p. 1395.