@article{AIHPA_1970__13_2_103_0,
author = {Tilgner, Hans},
title = {A class of solvable {Lie} groups and their relation to the canonical formalism},
journal = {Annales de l'institut Henri Poincar\'e. Section A, Physique Th\'eorique},
pages = {103--127},
year = {1970},
publisher = {Gauthier-Villars},
volume = {13},
number = {2},
mrnumber = {277192},
language = {en},
url = {https://www.numdam.org/item/AIHPA_1970__13_2_103_0/}
}
TY - JOUR AU - Tilgner, Hans TI - A class of solvable Lie groups and their relation to the canonical formalism JO - Annales de l'institut Henri Poincaré. Section A, Physique Théorique PY - 1970 SP - 103 EP - 127 VL - 13 IS - 2 PB - Gauthier-Villars UR - https://www.numdam.org/item/AIHPA_1970__13_2_103_0/ LA - en ID - AIHPA_1970__13_2_103_0 ER -
%0 Journal Article %A Tilgner, Hans %T A class of solvable Lie groups and their relation to the canonical formalism %J Annales de l'institut Henri Poincaré. Section A, Physique Théorique %D 1970 %P 103-127 %V 13 %N 2 %I Gauthier-Villars %U https://www.numdam.org/item/AIHPA_1970__13_2_103_0/ %G en %F AIHPA_1970__13_2_103_0
Tilgner, Hans. A class of solvable Lie groups and their relation to the canonical formalism. Annales de l'institut Henri Poincaré. Section A, Physique Théorique, Tome 13 (1970) no. 2, pp. 103-127. https://www.numdam.org/item/AIHPA_1970__13_2_103_0/
[1] et , Limitable Dynamical Groups in Quantum Mechanics. I. General Theory and a Spinless Model. J. Math. Phys., t. 9, 1968, p. 1638- 1656. | Zbl | MR
et , To appear.
[2] , C*-Algebras of a Free Boson Field. Commun. Math. Phys., t. 1, 1965, p. 14-48. | Zbl | MR
[3] , Jordan Algebras and their Applications. University of Minnesota, Minneapolis, 1962. | Zbl
[4] , Differential Geometry and Symmetric Spaces. Academic Press, N. Y., 1962. | Zbl | MR
[5] , Symmetric Spaces. I. Benjamin, N. Y., 1969. | Zbl
[6] , The Exponential Representation of Canonical Matrices. Am. J. Math., t. 61, 1939, p. 897-911. | Zbl | MR
[7] , Invariance in Quantum Mechanics and Group Extensions in Gürsey (ed.) : Group Theoretical Concepts and Methods in Elementary Particle Physics. Gordon and Breach, N. Y., 1964. | Zbl | MR
[8] , The Representations of the Oscillator Group. Commun. Math. Phys., t. 4, 1967, p. 217-236. | Zbl | MR
[9] , Lie Algebras. Interscience, N. Y., 1961. | Zbl | MR
[10] , Lie Groups in Quantum Mechanics. Springer, Lecture, Notes in Mathematics, 52, Berlin, 1968. | Zbl
[11] Séminaire Sophus Lie, E. N. S., 1954. Théorie des Algèbres de Lie, Topologie des Groupes de Lie. | Zbl
[12] , Quantized Differential Forms. Topology, t. 7, 1968, p. 147-172. | Zbl | MR
[13] , Algebra. Addison-Wesley, Reading, Mass., 1965. | Zbl | MR
[14] et , Dynamical Group of the Anisotropic Harmonic Oscillator. Nuovo Cimento, t. 43 A, 1966, p. 1203-1207.
[15] , Square Root Extraction for Anticommuting Spinors. Soviet. Math. Dokl., t. 8, 1967, p. 32-34. | Zbl
[16] , Lie Groups for Physicists. Benjamin, N. Y., 1966. | Zbl | MR
[17] , Theory of Lie Groups. I. Princeton, 1964.





