Symplectic periods of the continuous spectrum of GL(2n)
Annales de l'Institut Fourier, Volume 64 (2014) no. 4, p. 1561-1580

We provide a formula for the symplectic period of an Eisenstein series on GL(2n) and determine when it is not identically zero.

On donne une formule pour la période symplectique d’une série d’Eisenstein pour le groupe GL(2n) et on détermine sous quelles conditions celle-ci n’est pas identiquement nulle.

DOI : https://doi.org/10.5802/aif.2890
Classification:  11F67,  11F70
Keywords: symplectic periods, intertwining periods, continuous spectrum
@article{AIF_2014__64_4_1561_0,
     author = {Yamana, Shunsuke},
     title = {Symplectic periods of the continuous spectrum of $\mathrm{GL}(2n)$},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {64},
     number = {4},
     year = {2014},
     pages = {1561-1580},
     doi = {10.5802/aif.2890},
     mrnumber = {3329673},
     zbl = {06387317},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2014__64_4_1561_0}
}
Yamana, Shunsuke. Symplectic periods of the continuous spectrum of $\mathrm{GL}(2n)$. Annales de l'Institut Fourier, Volume 64 (2014) no. 4, pp. 1561-1580. doi : 10.5802/aif.2890. http://www.numdam.org/item/AIF_2014__64_4_1561_0/

[1] Arthur, J. On the inner product of truncated Eisenstein series, Duke Math. J., Tome 49 (1982), pp. 35-70 | Article | MR 650368 | Zbl 0518.22012

[2] Bernstein, J. P-invariant distributions on GL(N) and the classification of unitary representations of GL(N) (non-archimedean case), Lie Group Representations II, Springer (Lec. Notes in Math.) Tome 1041 (1984), pp. 50-102 | MR 748505

[3] Jacquet, H.; Lapid, E.; Rallis, S. A spectral identity for skew symmetric matrices, Contributions to Automorphic Forms, Geometry, and Number Theory, Johns Hopkins University Press, Baltimore (2004), pp. 421-455 | MR 2058616 | Zbl 1082.11029

[4] Jacquet, H.; Lapid, E.; Rogawski, J. Periods of automorphic forms, J. Am. Math. Soc., Tome 12 (1999), pp. 173-240 | Article | MR 1625060 | Zbl 1012.11044

[5] Jacquet, H.; Piatetski-Shapiro, I.I.; Shalika, J. Rankin-Selberg Convolutions, Am. J. Math., Tome 105 (1983), pp. 367-464 | Article | MR 701565 | Zbl 0525.22018

[6] Jacquet, H.; Rallis, S. Symplectic periods, J. Reine Angew. Math., Tome 423 (1992), pp. 175-197 | MR 1142486 | Zbl 0734.11035

[7] Lapid, E.; Rogawski, J. Periods of Eisenstein series: the Galois case, Duke Math. J., Tome 120 (2003) no. 1, pp. 153-226 | Article | MR 2010737 | Zbl 1037.11033

[8] Moeglin, C.; Waldspurger, J.-L. Le spectre résiduel de GL(n), Ann. Sci. École Norm. Sup. (4), Tome 22 (1989), pp. 605-674 | Numdam | MR 1026752 | Zbl 0696.10023

[9] Moeglin, C.; Waldspurger, J.-L. Spectral Decomposition and Eisenstein Series, Cambridge University Press, Cambridge Tracts in Mathematics, Tome 113 (1995) | MR 1361168 | Zbl 0846.11032

[10] Offen, O. On symplectic periods of discrete spectrum of GL 2n , Israel J. Math., Tome 154 (2006), pp. 253-298 | Article | MR 2254544 | Zbl 1148.11025

[11] Offen, O. Residual spectrum of GL 2n distinguished by the symplectic group, Duke Math. J., Tome 134 (2006) no. 2, pp. 313-357 | Article | MR 2248833 | Zbl 1220.11072

[12] Offen, O.; Sayag, E. On unitary representations of GL 2n distinguished by the symplectic group, J. Number Theory, Tome 125 (2007), pp. 344-355 | Article | MR 2332593 | Zbl 1147.11028

[13] Vogan, D. The unitary dual of GL(n) over an Archimedean field, Invent. Math., Tome 83 (1986), pp. 449-505 | Article | MR 827363 | Zbl 0598.22008