Symplectic periods of the continuous spectrum of GL(2n)
Annales de l'Institut Fourier, Volume 64 (2014) no. 4, pp. 1561-1580.

We provide a formula for the symplectic period of an Eisenstein series on GL(2n) and determine when it is not identically zero.

On donne une formule pour la période symplectique d’une série d’Eisenstein pour le groupe GL(2n) et on détermine sous quelles conditions celle-ci n’est pas identiquement nulle.

DOI: 10.5802/aif.2890
Classification: 11F67, 11F70
Keywords: symplectic periods, intertwining periods, continuous spectrum
Mot clés : périodes symplectiques, périodes d’entrelacement, spectre continu
Yamana, Shunsuke 1

1 Graduate School of Mathematics, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
@article{AIF_2014__64_4_1561_0,
     author = {Yamana, Shunsuke},
     title = {Symplectic periods of the continuous spectrum of $\mathrm{GL}(2n)$},
     journal = {Annales de l'Institut Fourier},
     pages = {1561--1580},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {64},
     number = {4},
     year = {2014},
     doi = {10.5802/aif.2890},
     zbl = {06387317},
     mrnumber = {3329673},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.2890/}
}
TY  - JOUR
AU  - Yamana, Shunsuke
TI  - Symplectic periods of the continuous spectrum of $\mathrm{GL}(2n)$
JO  - Annales de l'Institut Fourier
PY  - 2014
SP  - 1561
EP  - 1580
VL  - 64
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.2890/
DO  - 10.5802/aif.2890
LA  - en
ID  - AIF_2014__64_4_1561_0
ER  - 
%0 Journal Article
%A Yamana, Shunsuke
%T Symplectic periods of the continuous spectrum of $\mathrm{GL}(2n)$
%J Annales de l'Institut Fourier
%D 2014
%P 1561-1580
%V 64
%N 4
%I Association des Annales de l’institut Fourier
%U http://www.numdam.org/articles/10.5802/aif.2890/
%R 10.5802/aif.2890
%G en
%F AIF_2014__64_4_1561_0
Yamana, Shunsuke. Symplectic periods of the continuous spectrum of $\mathrm{GL}(2n)$. Annales de l'Institut Fourier, Volume 64 (2014) no. 4, pp. 1561-1580. doi : 10.5802/aif.2890. http://www.numdam.org/articles/10.5802/aif.2890/

[1] Arthur, J. On the inner product of truncated Eisenstein series, Duke Math. J., Volume 49 (1982), pp. 35-70 | DOI | MR | Zbl

[2] Bernstein, J. P-invariant distributions on GL(N) and the classification of unitary representations of GL(N) (non-archimedean case), Lie Group Representations II (Lec. Notes in Math.), Volume 1041, Springer, 1984, pp. 50-102 | MR

[3] Jacquet, H.; Lapid, E.; Rallis, S. A spectral identity for skew symmetric matrices, Contributions to Automorphic Forms, Geometry, and Number Theory, Johns Hopkins University Press, Baltimore, 2004, pp. 421-455 | MR | Zbl

[4] Jacquet, H.; Lapid, E.; Rogawski, J. Periods of automorphic forms, J. Am. Math. Soc., Volume 12 (1999), pp. 173-240 | DOI | MR | Zbl

[5] Jacquet, H.; Piatetski-Shapiro, I.I.; Shalika, J. Rankin-Selberg Convolutions, Am. J. Math., Volume 105 (1983), pp. 367-464 | DOI | MR | Zbl

[6] Jacquet, H.; Rallis, S. Symplectic periods, J. Reine Angew. Math., Volume 423 (1992), pp. 175-197 | MR | Zbl

[7] Lapid, E.; Rogawski, J. Periods of Eisenstein series: the Galois case, Duke Math. J., Volume 120 (2003) no. 1, pp. 153-226 | DOI | MR | Zbl

[8] Moeglin, C.; Waldspurger, J.-L. Le spectre résiduel de GL(n), Ann. Sci. École Norm. Sup. (4), Volume 22 (1989), pp. 605-674 | Numdam | MR | Zbl

[9] Moeglin, C.; Waldspurger, J.-L. Spectral Decomposition and Eisenstein Series, Cambridge Tracts in Mathematics, 113, Cambridge University Press, 1995 | MR | Zbl

[10] Offen, O. On symplectic periods of discrete spectrum of GL 2n , Israel J. Math., Volume 154 (2006), pp. 253-298 | DOI | MR | Zbl

[11] Offen, O. Residual spectrum of GL 2n distinguished by the symplectic group, Duke Math. J., Volume 134 (2006) no. 2, pp. 313-357 | DOI | MR | Zbl

[12] Offen, O.; Sayag, E. On unitary representations of GL 2n distinguished by the symplectic group, J. Number Theory, Volume 125 (2007), pp. 344-355 | DOI | MR | Zbl

[13] Vogan, D. The unitary dual of GL(n) over an Archimedean field, Invent. Math., Volume 83 (1986), pp. 449-505 | DOI | MR | Zbl

Cited by Sources: