Balaji, V.; Parameswaran, A.J.
Tensor product theorem for Hitchin pairs – An algebraic approach  [ Théorème du produit tensoriel pour des paires de Hitchin – Une approche algébrique ]
Annales de l'institut Fourier, Tome 61 (2011) no. 6 , p. 2361-2403
MR 2976315 | Zbl 1248.14046
doi : 10.5802/aif.2677
URL stable : http://www.numdam.org/item?id=AIF_2011__61_6_2361_0

Classification:  14J60,  14D20
Mots clés: paires de Hitchin semistables, catégories Tannakiennes, schémas en groupes, produit tensoriel
On donne une approche algébrique à l’étude des paires de Hitchin et on démontre le théorème du produit tensoriel pour des paires de Hitchin semistables sur les courbes projectives lisses définies sur un corps algébrique clos de caractéristique nulle ou bien de caractéristique p, où p désigne un nombre premier borné. On démontre aussi un théorème similaire pour des paires de Hitchin polystables.
We give an algebraic approach to the study of Hitchin pairs and prove the tensor product theorem for Higgs semistable Hitchin pairs over smooth projective curves defined over algebraically closed fields of characteristic zero and characteristic p, with p satisfying some natural bounds. We also prove the corresponding theorem for polystable Hitchin pairs.

Bibliographie

[1] Balaji, V.; Parameswaran, A. J. Semistable principal bundles. II. Positive characteristics, Transform. Groups, 8 (2003) no. 1, p. 3–36 Article  MR 1959761 | Zbl 1084.14013

[2] Bardsley, Peter; Richardson, R. W. Étale slices for algebraic transformation groups in characteristic p, Proc. London Math. Soc. (3), 51 (1985) no. 2, p. 295–317 Article  MR 794118 | Zbl 0604.14037

[3] Beilinson, Alexander; Drinfeld, Vladimir Chiral algebras, American Mathematical Society, Providence, RI, American Mathematical Society Colloquium Publications, 51 (2004) MR 2058353 | Zbl 1138.17300

[4] Biswas, Indranil; Schumacher, Georg Yang-Mills equation for stable Higgs sheaves, Internat. J. Math., 20 (2009) no. 5, p. 541–556 Article  MR 2526306 | Zbl 1169.53017

[5] Bogomolov, F. A. Holomorphic tensors and vector bundles on projective manifolds, Izv. Akad. Nauk SSSR Ser. Mat., 42 (1978) no. 6, p. 1227–1287 MR 522939 | Zbl 0439.14002

[6] Deligne, P.; Milne, J. Tannaka categories, Springer Lecture Notes in Mathematics, 900 (1982), p. 101-228 Article  Zbl 0477.14004

[7] Gieseker, D. On a theorem of Bogomolov on Chern classes of stable bundles, Amer. J. Math., 101 (1979) no. 1, p. 77–85 Article  MR 527826 | Zbl 0431.14005

[8] Hesselink, Wim H. Uniform instability in reductive groups, J. Reine Angew. Math., 303/304 (1978), p. 74–96 MR 514673 | Zbl 0386.20020

[9] Hitchin, N. J. The self-duality equations on a Riemann surface, Proc. London Math. Soc. (3), 55 (1987) no. 1, p. 59–126 Article  MR 887284 | Zbl 0634.53045

[10] Hitchin, Nigel Stable bundles and integrable systems, Duke Math. J., 54 (1987) no. 1, p. 91–114 Article  MR 885778 | Zbl 0627.14024

[11] Ilangovan, S.; Mehta, V. B.; Parameswaran, A. J. Semistability and semisimplicity in representations of low height in positive characteristic, A tribute to C. S. Seshadri (Chennai, 2002), Birkhäuser, Basel (Trends Math.) (2003), p. 271–282 MR 2017588 | Zbl 1067.20061

[12] Kempf, George R. Instability in invariant theory, Ann. of Math. (2), 108 (1978) no. 2, p. 299–316 Article  MR 506989 | Zbl 0406.14031

[13] Kirwan, Frances Clare Cohomology of quotients in symplectic and algebraic geometry, Princeton University Press, Princeton, NJ, Mathematical Notes, 31 (1984) MR 766741 | Zbl 0553.14020

[14] Laszlo, Y.; Pauly, C. The action of the Frobenius maps on rank 2 vector bundles in characteristic 2, J. Algebraic Geom., 11 (2002) no. 2, p. 219–243 Article  MR 1874113 | Zbl 1080.14527

[15] Mehta, V. B.; Parameswaran, A. J. Geometry of low height representations, Algebra, arithmetic and geometry, Part I, II (Mumbai, 2000), Tata Inst. Fund. Res., Bombay (Tata Inst. Fund. Res. Stud. Math.) 16 (2002), p. 417–426 MR 1940675 | Zbl 1060.20039

[16] Mehta, Vikram Bhagvandas Representations of algebraic groups and principal bundles on algebraic varieties, Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), Higher Ed. Press, Beijing (2002), p. 629–635 MR 1957070 | Zbl 1007.22020

[17] Milne, J.S. Semisimple Lie algebras, algebraic groups, and tensor categories (2007) (Milne’s home page)

[18] Ngô, Bao Châu Fibration de Hitchin et endoscopie, Invent. Math., 164 (2006) no. 2, p. 399–453 Article  MR 2218781 | Zbl 1098.14023

[19] Nori, Madhav V. The fundamental group-scheme, Proc. Indian Acad. Sci. Math. Sci., 91 (1982) no. 2, p. 73–122 Article  MR 682517 | Zbl 0586.14006

[20] Ramanan, S.; Ramanathan, A. Some remarks on the instability flag, Tohoku Math. J. (2), 36 (1984) no. 2, p. 269–291 Article  MR 742599 | Zbl 0567.14027

[21] Ramanathan, A. Stable principal bundles on a compact Riemann surface - Construction of moduli space, Bombay University (1976) (Ph. D. Thesis) MR 369747

[22] Rousseau, G. Instabilité dans les fibrés vectoriels (d’après Bogomolov), Algebraic surfaces (Orsay, 1976–78), Springer, Berlin (Lecture Notes in Math.) 868 (1981), p. 277–292 Zbl 0477.14012

[23] Serre, Jean-Pierre Sur la semi-simplicité des produits tensoriels de représentations de groupes, Invent. Math., 116 (1994) no. 1-3, p. 513–530 Article  MR 1253203 | Zbl 0816.20014

[24] Serre, Jean-Pierre Moursund Lectures (1998) (University of Oregon, Mathematics Department)

[25] Serre, Jean-Pierre Complète réductibilité, Astérisque (2005) no. 299, p. 195–217 (Séminaire Bourbaki. Vol. 2003/2004, Exp. No. 932, viii) Numdam | MR 2167207 | Zbl 1156.20313

[26] Simpson, Carlos T. Higgs bundles and local systems, Inst. Hautes Études Sci. Publ. Math. (1992) no. 75, p. 5–95 Article  Numdam | MR 1179076 | Zbl 0814.32003

[27] Simpson, Carlos T. Moduli of representations of the fundamental group of a smooth projective variety. I, Inst. Hautes Études Sci. Publ. Math. (1994) no. 79, p. 47–129 Article  Numdam | MR 1307297 | Zbl 0891.14005