Holomorphic retractions and boundary Berezin transforms
Annales de l'Institut Fourier, Volume 59 (2009) no. 2, p. 641-657

In an earlier paper, the first two authors have shown that the convolution of a function f continuous on the closure of a Cartan domain and a K-invariant finite measure μ on that domain is again continuous on the closure, and, moreover, its restriction to any boundary face F depends only on the restriction of f to F and is equal to the convolution, in F, of the latter restriction with some measure μ F on F uniquely determined by μ. In this article, we give an explicit formula for μ F in terms of F, showing in particular that for measures μ corresponding to the Berezin transforms the measures μ F again correspond to Berezin transforms, but with a shift in the value of the Wallach parameter. Finally, we also obtain a nice and simple description of the holomorphic retraction on these domains which arises as the boundary limit of geodesic symmetries.

Dans un papier antérieur, les deux premiers co-auteurs ont démontré que la convolution d’une fonction f continue sur l’adhérence d’un domaine de Cartan avec une mesure finie μ K-invariante dans ce domaine est aussi continue sur l’adhérence. De plus, sa restriction à chaque face F de la frontière dépend uniquement de la restriction de f sur F et est égale à la convolution, dans F, de cette restriction-la, avec une certaine mesure μ F sur F, déterminée uniquement par μ. Dans cet article nous donnons une formule explicite pour μ F en termes de F, en montrant plus particulièrement que pour des mesures μ correspondant à des transformées de Berezin, les mesures μ F correspondent à nouveau à des transformées de Berezin mais avec un décalage dans la valeur du paramètre de Wallach. Enfin, nous obtenons aussi une description simple et jolie d’une rétraction holomorphique sur ces domaines qui découle de la limite à la frontière de symétries géodésiques.

DOI : https://doi.org/10.5802/aif.2444
Classification:  32M15,  17C27,  53C35
Keywords: Berezin transform, Cartan domain, convolution operator
@article{AIF_2009__59_2_641_0,
     author = {Arazy, Jonathan and Engli\v s, Miroslav and Kaup, Wilhelm},
     title = {Holomorphic retractions and boundary Berezin transforms},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {59},
     number = {2},
     year = {2009},
     pages = {641-657},
     doi = {10.5802/aif.2444},
     mrnumber = {2521432},
     zbl = {1176.47026},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2009__59_2_641_0}
}
Holomorphic retractions and boundary Berezin transforms. Annales de l'Institut Fourier, Volume 59 (2009) no. 2, pp. 641-657. doi : 10.5802/aif.2444. http://www.numdam.org/item/AIF_2009__59_2_641_0/

[1] Arazy, J.; Engliš, M. Iterates and the boundary behavior of the Berezin transform, Ann. Inst. Fourier (Grenoble), Tome 51 (2001) no. 4, pp. 110-1133 | Article | Numdam | MR 1849217 | Zbl 0989.47027

[2] Arazy, Jonathan A survey of invariant Hilbert spaces of analytic functions on bounded symmetric domains, Multivariable operator theory (Seattle, WA, 1993), Amer. Math. Soc., Providence, RI (Contemp. Math.) Tome 185 (1995), pp. 7-65 | MR 1332053 | Zbl 0831.46014

[3] Arazy, Jonathan; Ørsted, Bent Asymptotic expansions of Berezin transforms, Indiana Univ. Math. J., Tome 49 (2000) no. 1, pp. 7-30 | Article | MR 1777039 | Zbl 0968.32013

[4] Arazy, Jonathan; Zhang, Gen Kai L q -estimates of spherical functions and an invariant mean-value property, Integral Equations Operator Theory, Tome 23 (1995) no. 2, pp. 123-144 | Article | MR 1351341 | Zbl 0837.31003

[5] Berger, C. A.; Coburn, L. A.; Zhu, K. H. Function theory on Cartan domains and the Berezin-Toeplitz symbol calculus, Amer. J. Math., Tome 110 (1988) no. 5, pp. 921-953 | Article | MR 961500 | Zbl 0657.32001

[6] Coburn, L. A. A Lipschitz estimate for Berezin’s operator calculus, Proc. Amer. Math. Soc., Tome 133 (2005) no. 1, p. 127-131 (electronic) | Article | MR 2085161 | Zbl 1093.47024

[7] Faraut, Jacques; Korányi, Adam Analysis on symmetric cones, The Clarendon Press Oxford University Press, New York, Oxford Mathematical Monographs (1994) (Oxford Science Publications) | MR 1446489 | Zbl 0841.43002

[8] Harris, Lawrence A. Bounded symmetric homogeneous domains in infinite dimensional spaces, Proceedings on Infinite Dimensional Holomorphy (Internat. Conf., Univ. Kentucky, Lexington, Ky., 1973), Springer, Berlin (1974), p. 13-40. Lecture Notes in Math., Vol. 364 | MR 407330 | Zbl 0293.46049

[9] Hua, L. K. Harmonic analysis of functions of several complex variables in the classical domains, American Mathematical Society, Providence, R.I., Translated from the Russian by Leo Ebner and Adam Korányi (1963) | MR 171936 | Zbl 0507.32025

[10] Kaup, W.; Sauter, J. Boundary structure of bounded symmetric domains, Manuscripta Math., Tome 101 (2000) no. 3, pp. 351-360 | Article | MR 1751038 | Zbl 0981.32012

[11] Loos, Ottmar Bounded symmetric domains and Jordan pairs (1977) (University of California, Irvine)

[12] Peetre, Jaak The Berezin transform and Ha-plitz operators, J. Operator Theory, Tome 24 (1990) no. 1, pp. 165-186 | MR 1086552 | Zbl 0793.47026

[13] Stein, Karl Maximale holomorphe und meromorphe Abbildungen. II, Amer. J. Math., Tome 86 (1964), pp. 823-868 | Article | MR 171030 | Zbl 0144.33901

[14] Unterberger, A.; Upmeier, H. The Berezin transform and invariant differential operators, Comm. Math. Phys., Tome 164 (1994) no. 3, pp. 563-597 | Article | MR 1291245 | Zbl 0843.32019

[15] Upmeier, Harald Jordan algebras in analysis, operator theory, and quantum mechanics, Published for the Conference Board of the Mathematical Sciences, Washington, DC, CBMS Regional Conference Series in Mathematics, Tome 67 (1987) | MR 874756 | Zbl 0608.17013

[16] Zhang, Genkai Berezin transform on real bounded symmetric domains, Trans. Amer. Math. Soc., Tome 353 (2001) no. 9, p. 3769-3787 (electronic) | Article | MR 1837258 | Zbl 0965.22015