Relation entre les conjectures de Farrell-Jones en K-théories algébrique et hermitienne
Annales de l'Institut Fourier, Tome 57 (2007) no. 1, pp. 197-207.

On montre que si la conjecture de Farrell-Jones en K-théorie algébrique est vérifiée alors celle de la K-théorie hermitienne est équivalente à l’existence d’un entier pZ tel que “assembly map” soit un isomorphisme en degré p et p+1.

We prove that if the Farrell-Jones conjecture for algebraic K-theory is true then the same conjecture for hermitian K-theory is equivalent to the fact that it exists pZ such that the assembly map is an isomorphism in degrees p and p+1.

DOI : https://doi.org/10.5802/aif.2256
Classification : 19D99
Mots clés : K-théorie algébrique, K-théorie hermitienne, conjectures de Farrell-Jones
@article{AIF_2007__57_1_197_0,
     author = {Battikh, Naoufel},
     title = {Relation entre les conjectures de Farrell-Jones en $K$-th\'eories alg\'ebrique et hermitienne},
     journal = {Annales de l'Institut Fourier},
     pages = {197--207},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {57},
     number = {1},
     year = {2007},
     doi = {10.5802/aif.2256},
     mrnumber = {2313090},
     zbl = {1126.19005},
     language = {fr},
     url = {www.numdam.org/item/AIF_2007__57_1_197_0/}
}
Battikh, Naoufel. Relation entre les conjectures de Farrell-Jones en $K$-théories algébrique et hermitienne. Annales de l'Institut Fourier, Tome 57 (2007) no. 1, pp. 197-207. doi : 10.5802/aif.2256. http://www.numdam.org/item/AIF_2007__57_1_197_0/

[1] Bartels, A.; Reich, H. On the Farrell-Jones conjectures for higher algebraic K -theory (2003) (Preprintreihe SFB) | Zbl 1073.19002

[2] Farrell, F. T.; Jones, L. Isomorphism conjectures in algebraic K-theory, J. Amer, Math. Soc., Volume 6 (1993) no. 2, pp. 249-297 | MR 1179537 | Zbl 0798.57018

[3] H. Bass, A. Heller; Swan, R. G. The whitehead group of polynomial extension, Inst. hautes études sci., Volume 22 (1964), pp. 61-79 | Article | Numdam | MR 174605 | Zbl 0248.18026

[4] Hsiang, W. C. Borel’s conjecture, Novikov’s conjecture and the K -theoritic analogue, World scientific book, Singapour, 1989 | MR 1119074 | Zbl 0744.57018

[5] Karoubi, M. Le théorème fondamental de la K-théorie hermitienne, Annals of mathematics, Volume 112 (1980), pp. 259-282 | Article | MR 592292 | Zbl 0483.18008

[6] Loday, J.-L. K-théorie algébrique et représentation de groupes, Ann. Sci. Ecole Normale Sup. Sér. 4, Volume 9 (1976) no. 3, pp. 309-377 | Numdam | MR 447373 | Zbl 0362.18014

[7] Whitehead, G. W. Generalised homology theories, Trans. A. M. S, Volume 102 (1962), pp. 227-283 | Article | MR 137117 | Zbl 0124.38302