For Schrödinger operator on Riemannian manifolds with conical end, we study the contribution of zero energy resonant states to the singularity of the resolvent of near zero. Long-time expansion of the Schrödinger group is obtained under a non-trapping condition at high energies.
Nous étudions la contribution des états résonnants d’énergie nulle aux singularités de la résolvante près de zéro de l’opérateur de Schrödinger sur les variétés riemanniennes à bout conique. Sous une condition non-captive à haute énergie, nous obtenons le développement asymptotique du groupe de Schrödinger pour grand.
Keywords: Resolvent expansion, zero energy resonance, Schrödinger operator with metric
@article{AIF_2006__56_6_1903_0, author = {Wang, Xue Ping}, title = {Asymptotic expansion in time of the {Schr\"odinger} group on conical manifolds}, journal = {Annales de l'Institut Fourier}, pages = {1903--1945}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {56}, number = {6}, year = {2006}, doi = {10.5802/aif.2230}, zbl = {1118.35022}, mrnumber = {2282678}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2230/} }
TY - JOUR AU - Wang, Xue Ping TI - Asymptotic expansion in time of the Schrödinger group on conical manifolds JO - Annales de l'Institut Fourier PY - 2006 SP - 1903 EP - 1945 VL - 56 IS - 6 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2230/ DO - 10.5802/aif.2230 LA - en ID - AIF_2006__56_6_1903_0 ER -
%0 Journal Article %A Wang, Xue Ping %T Asymptotic expansion in time of the Schrödinger group on conical manifolds %J Annales de l'Institut Fourier %D 2006 %P 1903-1945 %V 56 %N 6 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2230/ %R 10.5802/aif.2230 %G en %F AIF_2006__56_6_1903_0
Wang, Xue Ping. Asymptotic expansion in time of the Schrödinger group on conical manifolds. Annales de l'Institut Fourier, Volume 56 (2006) no. 6, pp. 1903-1945. doi : 10.5802/aif.2230. http://www.numdam.org/articles/10.5802/aif.2230/
[1] Low-energy parameters in nonrelativistic scattering theory, Ann. Physics, Volume 148 (1983), pp. 308-326 | DOI | MR | Zbl
[2] There is no Efimov effect for four or more particles, Phys. Rev. D, Volume 7 (1973), pp. 2517-2519 | DOI | MR
[3] On Efimov’s effect: A new pathology of three-particle systems, Phys. Lett. B, Volume 35 (1971), p. 25-27; II. Phys. Lett. D, 5 (1972), 1992-2002 | DOI
[4] Spectral asymmetry and Riemannian geometry I, Math. Proc. Cambridge Phil. Soc., Volume 77 (1975), pp. 43-69 | DOI | MR | Zbl
[5] Threshold scattering in two dimensions, Ann. Inst. H. Poincaré, Sect. A, Volume 48 (1988), pp. 175-204 | EuDML | Numdam | MR | Zbl
[6] Opérateurs à indices, II, Séminaire d’analyse fonctionnelle, Publication des séminaires mathématiques, Univ. Rennes 1, 1973 | EuDML | MR
[7] An index theorem for first order regular singular operators, Amer. J. Math., Volume 110 (1988), pp. 659-714 | DOI | MR | Zbl
[8] Strichartz estimates for the wave and Schrödinger equations with the inverse-square potentials, J. Funct. Analysis, Volume 203 (2003), pp. 519-549 | DOI | MR | Zbl
[9] Uniform estimates of the resolvent of the Laplace-Beltrami operator on infinite volume Riemannian manifolds, II, Ann. Inst. H. Poincaré, Volume 3 (2002), pp. 673-691 | MR | Zbl
[10] Théorème de l’indice sur les variétés non-compactes, J. reine angew. Math., Volume 541 (2001), pp. 81-115 | DOI | MR | Zbl
[11] A topological criterion for the existence of half-bound states, J. London Math. Soc., Volume 65 (2002), pp. 757-768 | DOI | MR | Zbl
[12] Le saut en zéro de la fonction de décalage spectral, J. Funct. Anal., Volume 212 (2004), pp. 222-260 | DOI | MR | Zbl
[13] Zero energy asymptotics of the resolvent for a class of slowly decaying potential, Preprint, 2003
[14] Exponential bounds and absence of positive eigenvalues for -body Schrödinger operators, Comm. Math. Phys., Volume 87 (1982/83), pp. 429-447 | DOI | MR | Zbl
[15] Eigenvalues of Schrödinger operators with potential asymptotically homogeneous of degree , Preprint, October 2005
[16] The Schrödinger propagators for scattering metrics, Preprint, 2003
[17] Spectral properties of Schrödinger operators and time decay of wave functions, Duke Math. J., Volume 46 (1979), pp. 583-611 | DOI | MR | Zbl
[18] Multiple commutator estimates and resolvent smoothness in quantum scattering theory, Ann. Inst. H. Poincaré, Sect A, Volume 41 (1984), pp. 207-225 | Numdam | MR | Zbl
[19] A unified approach to resolvent expansions at thresholds, Reviews Math. Phys., Volume 13 (2001), pp. 717-754 | DOI | MR | Zbl
[20] Asymptotic Theory of Elliptic Boundary Value Problemes in Singularly Perturbed Domains, 1, Birkhäuser, Boston-Berlin, 2000 | Zbl
[21] The Atiyah-Patodi-Singer index theorem, A. K. Peters Classics, Massachusetts, 1993 | MR | Zbl
[22] Absence of singular continuous spectrum for certain self-adjoint operators, Comm. Math. Phys., Volume 78 (1981), pp. 391-408 | DOI | MR | Zbl
[23] Relative zeta functions, relative determinants, and scattering theory, Comm. Math. Physics, Volume 192 (1998), pp. 309-347 | DOI | MR | Zbl
[24] Asymptotic expansions in time for solutions of Schrödinger type equations, J. Funct. Analysis, Volume 49 (1982), pp. 10-53 | DOI | MR | Zbl
[25] Low energy asymptotics for Schrödinger operators with slowly decreasing potentials, Comm. Math. Phys., Volume 161 (1994), pp. 63-76 | DOI | MR | Zbl
[26] Noncentral potentials: the generalized Levinson theorem and the structure of the spectrum, J. Math. Phys., Volume 18 (1977), pp. 1582-1588 | DOI | MR
[27] Scattering Theory of Waves and Particles, Springer-Verlag, Berlin, 1982 | MR | Zbl
[28] Asymptotics and Special Functions, A. K. Peters Classics, Massachusetts, 1997 | MR | Zbl
[29] Local decay of scattering solutions to Schrödinger’s equation, Comm. Math. Phys., Volume 61 (1978), pp. 149-168 | DOI | MR | Zbl
[30] Relative time-delay for perturbations of elliptic operators and semi-classical asymptotics, J. Funct. Analysis, Volume 126 (1994), pp. 36-82 | DOI | MR | Zbl
[31] On the short wave asymptotic behaviour of solutions of stationary problems and the asymptoic behaviou as of solutions of non-stationary problems, Russ. Math. Survey, Volume 30 (1975), pp. 1-58 | DOI | MR | Zbl
[32] Propagation of singularities in three-body scattering, Astérisque, Volume 262 (2000), pp. 6-151 | Numdam | MR | Zbl
[33] Semiclassical estimates in asymptotically Euclidean scattering, Comm. in Math. Phys., Volume 212 (2000), pp. 205-217 | DOI | MR | Zbl
[34] Time-decay of scattering solutions and classical trajectories, Ann. Inst. H. Poincaré, Sect A, Volume 47 (1987), pp. 25-37 | Numdam | MR | Zbl
[35] Time-decay of scattering solutions and resolvent estimates for semi-classical Schrödinger operators, J. Diff. Equations, Volume 71 (1988), pp. 348-395 | DOI | MR | Zbl
[36] Asymptotic behavior of the resolvent of -body Schrödinger operators near a threshold, Ann. Inst. H. Poincaré, Volume 4 (2003), pp. 553-600 | MR | Zbl
[37] On the existence of the -body Efimov effect, J. Funct. Analysis, Volume 209 (2004), pp. 137-161 | DOI | MR | Zbl
[38] Threshold energy resonance in geometric scattering, Proceedings of Symposium “Scattering and Spectral Theory”, August 2003, Recife, Brazil, Matemática Contemporânea, Volume 26 (2004), pp. 135-164 | MR | Zbl
[39] A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl
[40] The low-energy scattering for slowly decreasing potentials, Comm. Math. Phys., Volume 85 (1982), pp. 177-198 | DOI | MR | Zbl
Cited by Sources: