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ACCURATE EIGENVALUE ASYMPTOTICS FOR
THE MAGNETIC NEUMANN LAPLACIAN

by Soeren FOURNAIS & Bernard HELFFER (*)

Abstract. — Motivated by the theory of superconductivity and more precisely
by the problem of the onset of superconductivity in dimension two, many papers
devoted to the analysis in a semi-classical regime of the lowest eigenvalue of the
Schrödinger operator with magnetic field have appeared recently. Here we would
like to mention the works by Bernoff-Sternberg, Lu-Pan, Del Pino-Felmer-Sternberg
and Helffer-Morame and also Bauman-Phillips-Tang for the case of a disc. In the
present paper we settle one important part of this question completely by proving
an asymptotic expansion to all orders for low-lying eigenvalues for generic domains.
The word ‘generic’ means in this context that the curvature of the boundary of the
domain has a unique non-degenerate maximum.

Résumé. — Motivés par la théorie de la supraconductivité et plus précisé-
ment par le problème de l’apparition de la supraconductivité à la surface, de
nombreux articles ont été consacrés récemment à l’analyse semi-classique de la
plus petite valeur propre de l’opérateur de Schrödinger avec champ magnétique
(Bernoff-Sternberg, Lu-Pan, Del Pino-Felmer-Sternberg, Helffer-Morame et aussi
Bauman-Phillips-Tang pour le cas du disque). Dans cet article, nous proposons
des asymptotiques complètes pour les premières valeurs propres dans le cas d’un
domaine de R2 dont la courbure du bord n’a qu’un unique maximum non-dégénéré.

1. Introduction

The object of study in this paper is a magnetic Schrödinger operator
with Neumann boundary conditions in a smooth, bounded domain Ω. We
are interested in finding an accurate description of the eigenvalues near the

Keywords: semi-classical analysis, supraconductivity, Neumann Laplacian, magnetic
Laplacian.
Math. classification: 47A75, 58C40, 35Q40, 81Q20.
(*) The two authors are supported by the European Research Network ‘Postdoctoral
Training Program in Mathematical Analysis of Large Quantum Systems’ with contract
number HPRN-CT-2002-00277, and the ESF Scientific Programme in Spectral Theory
and Partial Differential Equations (SPECT).



2 Soeren FOURNAIS & Bernard HELFFER

bottom of the spectrum. In particular, we will improve estimates given in
[15] in the case of constant magnetic field.

Apart from its intrinsic mathematical interest, this question is impor-
tant for applications to superconductivity. Precise knowledge of the lowest
eigenvalues of this magnetic Schrödinger operator is crucial for a detailed
description of the nucleation of superconductivity (on the boundary) for
superconductors of Type II and for accurate estimates of the critical field
HC3 . These applications will be the subject of further work and will be pub-
lished elsewhere. We refer the reader to the works of Bernoff-Sternberg [3],
Lu-Pan [23, 22, 24, 25], and Helffer-Pan [17] for further discussion of this
subject and to [33] and [29] for the physical motivation.

Let us fix the notations. The domain Ω ⊂ R2 is supposed to be smooth,
bounded and simply connected. Points (x1, x2) in R2 are denoted by z or x.
At each point z of the boundary, we denote by ν(z) the interior unit normal
vector to the boundary of Ω. We define the magnetic Neumann operator
H by

(1.1) D(H) 3 u 7→ Hu = Hh,Ωu = (−ih∇z −A(z))2u(z) .

Here A(z) is a vector potential generating a constant magnetic field;
curlA = 1. We will make a specific choice of gauge in Definition 1.4 be-
low. The domain D(H) of the operator H is defined by

D(H) =
{
u ∈ H2(Ω)

∣∣ ν · (−ih∇z −A(z))u
∣∣
∂Ω

= 0
}
.

The case of the half-plane, Ω = R×R+, will be important for fixing no-
tations. After a gauge transformation and a partial Fourier transformation
we get, in this case and with h = 1, the family of models on the half-line:

(1.2) HN,ξ = D2
x + (x+ ξ)2 ,

on L2(R+) and with Neumann boundary conditions at x = 0. Important
results about the operators HN,ξ will be recalled in Appendix A; here we
only define the notation that will be used throughout the text. Let µ̂(1)(ξ)
be the lowest eigenvalue of HN,ξ. Then ξ 7→ µ̂(1)(ξ) has a unique minimum
Θ0 attained at a point that we will denote by ξ0. The corresponding unique
positive, normalized eigenfunction of HN,ξ0 will be denoted by u0. We also
introduce:

(1.3) C1 =
u2

0(0)
3

.

The main result of the paper gives the asymptotic expansion of the lowest
eigenvalues of H. We define µ(n)(h) to be the n-th eigenvalue of H, in
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MAGNETIC NEUMANN LAPLACIAN 3

particular,
µ(1)(h) = inf SpecHh,Ω ,

and prove the following result.

Theorem 1.1. — Suppose that Ω is a smooth bounded domain, that
its curvature ∂Ω 3 s 7→ κ(s) at the boundary has a unique maximum,

(1.4) κ(s) < κ(s0) =: kmax , for all s 6= s0 ,

and that the maximum is non-degenerate, i.e.

(1.5) k2 := −κ′′(s0) 6= 0 .

Then, for all n ∈ N \ {0}, there exists a sequence
{
ζ
(n)
j

}∞
j=1

⊂ R (which
can be calculated recursively to any order) such that µ(n)(h) admits the
following asymptotic expansion (for h↘ 0):

µ(n)(h) ∼ Θ0h− kmaxC1h
3/2 + C1Θ

1/4
0

√
3k2
2 (2n− 1)h7/4(1.6)

+ h15/8
∞∑

j=0

hj/8ζ
(n)
j .

Remarks 1.2.

• The semiclassical limit h ↘ 0 is clearly equivalent to a large mag-
netic field limit, since∫

Ω

|(−i∇z −BA(z))u(z)|2 dz = B2

∫
Ω

|(−i 1
B∇z −A(z))u(z)|2 dz .

• Previous results on the bottom of the spectrum of Hh,Ω were ob-
tained in [15], where the two first terms in the expansion of µ(1)(h)
were given (see [15, Theorems 10.3 and 11.1]):

(1.7) µ(1)(h) = Θ0h− kmaxC1h
3/2 +O(h5/3) .

• It is rather reasonable to believe that the proof of Theorem 1.1 can
be adapted for getting a similar result under the weaker assumption
that there exists J ∈ N, such that

(1.8)

{
κ(2j)(s0) = 0 , for j = 1, 2, . . . , J − 1 ,

κ(2J)(s0) 6= 0 ,

i.e. the maximum is non-degenerate of order 2J . However we will
not pursue this further.

If the uniqueness condition in (1.4) is replaced by the assump-
tion that there is a finite number of maxima (for which (1.5) is

TOME 56 (2006), FASCICULE 1



4 Soeren FOURNAIS & Bernard HELFFER

assumed to hold), we expect the existence of sequences of eigenval-
ues z(n)(h) corresponding to each maximum. This also follows from
the techniques applied in the present paper with a little extra work.

• The assumption that Ω is bounded is included for convenience only.
It will only be used once (in the proof of Theorem 4.4) in order to
allow us to refer directly to a result by Baumann-Phillips-Tang [2].
An adaptation of the techniques present in this paper (and already
in [15]) would permit the omission of this assumption.

• We only consider here the case of constant magnetic field, since
this is the natural setting for the application that we have in mind
(superconductivity). However, the non-constant field case is also
interesting —both from a mathematical and a physical point of
view— and has been considered in many of the works mentioned
above, such as [15] and [23]. It follows easily from those papers that
our main result, Theorem 1.1, holds without change in the case of a
non-constant field B(z) = curlA(z) provided B(z) is constant = B

on a neighborhood of the boundary ∂Ω and satisfies outside this
neighborhood

inf
z∈Ω

B(z) > Θ0B .

However, we do not pursue this direction further here.
• Our proof of Theorem 1.1 also gives an approximation of the eigen-

function uh by explicit quasi-modes modulo O(h∞) both in L2(Ω)-
and in H2(Ω)-norm. This result is not needed in the present paper,
but is probably useful for computing the asymptotics of quantities
like

∫
|uh(x)|4dx (occuring in the analysis of the bifurcation in the

problem in superconductivity).

For applications to bifurcations from the normal state in superconduc-
tivity it seems important to calculate the splitting between the ground and
first excited states of H(h). Let us define

(1.9) ∆(h) = µ(2)(h)− µ(1)(h) .

Corollary 1.3. — Under the hypothesis from Theorem 1.1, ∆(h) ad-
mits the following asymptotics:

(1.10) ∆(h) ∼ C1Θ
1/4
0

√
6k2h

7/4 + h15/8
∞∑

j=0

hj/8ξj .

where ξj = ζ
(2)
j − ζ

(1)
j .

ANNALES DE L’INSTITUT FOURIER
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The case where Ω is a disc has been analyzed in great detail in [2],
using the radial symmetry to reduce the problem to ordinary differential
equations. In this case the splitting ∆(h) turns out to become zero for a
sequence of values of h tending to 0. This is a complication in the analysis
of bifurcation. Thus, in some sense, the more ‘generic’ situation considered
in this paper has a nicer property. We recall that for the disc it is reasonable
to conjecture from [2] that:

0 = lim inf
h→0

∆(h)
h2

< lim sup
h→0

∆(h)
h2

< +∞ .

We recall also that in the case of a domain with a unique corner, with a
sufficiently small angle, one has ([6], [7]):

lim inf
h→0

∆(h)
h

> 0 .

In our case, (1.10) implies:

lim
h→0

∆(h)
h

7
4

> 0 .

Of course (see Bonnaillie [5] for a discussion inspired by Helffer-Sjöstrand
[18, 19]), if there are multiple minima and symmetries, one expects an
exponentially small gap between the two lowest eigenvalues. This has been
confirmed recently by numerical computations by Bonnaillie-Dauge in the
case of the square.

The plan of the paper is as follows. In Section 2 we prove a simple non-
optimal upper bound to the ground state energy. This calculation motivates
the more systematic treatment in Section 3, where we introduce a ‘Grushin
problem’ in order to reduce the analysis to an effective model on the bound-
ary. The effective model allows us to construct quasimodes whose energy
corresponds to the lowest eigenvalues of H to any order in h. Thus we
get the upper bound inherent in Theorem 1.1. In order to prove that the
Grushin approach also gives a lower bound, we need to prove suitable lo-
calization results in phase space. That is carried through in sections 4 and
5. Finally, in Section 6 we finish the proof of Theorem 1.1. Appendix A
recalls a number of results from the analysis of the half-plane model that
are needed in the calculations. Appendix B contains definitions concerning
the coordinate system near the boundary in which all the calculations will
take place.

We end this introduction by fixing the gauge in which the actual calcu-
lations will be made.

TOME 56 (2006), FASCICULE 1



6 Soeren FOURNAIS & Bernard HELFFER

Definition 1.4 (Gauge choice). — We use the boundary coordinates
(s, t) defined in Appendix B and chosen such that κ(0) = kmax. Using
Lemma B.1, we may make a global gauge change φ such that on (− |∂Ω|

4 , |∂Ω|
4 )×

(0, t0), Ã has the form

(1.11) Ã =

(
−t+ t2k(s)

2

0

)
.

2. A simple upper bound to the ground state energy

This section contains a simple variational estimate of the ground state
energy µ(1)(h). The motivation for giving this result is a number of remarks
and calculations appearing in the literature. It turns out that the ‘obvious’
choice of trial functions does not give as good energy estimates as one might
expect. This motivates the more systematic approach in later sections.

Recall that we have defined the constants Θ0 and C1 in the introduction.

Theorem 2.1. — Suppose Ω is a smooth bounded domain. Let

kmax = sup
s
κ(s) = max

s
κ(s) ,

be the maximal curvature of the boundary and let

k2 = inf
s∈κ−1(kmax)

(−κ′′(s)) .

Then the ground state energy µ(1)(h) of the operator H (defined in (1.1))
satisfies

lim sup
h→0+

h−7/4
{
µ(1)(h)−

(
Θ0h− kmaxC1h

3/2 +

√
k2C1

2
h7/4

)}
6 0 .

Remark 2.2. — Theorem 2.1 does not give the correct coefficient to the
h7/4-term (compare with Theorem 1.1). The trial function used in the proof
below is too simple since it only uses the ground state u0 in the normal
variable. Note that, when quoting [3] in [26, Remark 4.2], del Pino, Felmer
and Sternberg forget to mention that one needs more terms in the [BeSt]
expansion of the formal solution to capture the correct coefficient.

Proof. — The proof consists of an explicit calculation with a suitably
chosen test function. (This is the same test function as mentioned in [26,
Remark 4.2]).

Let us consider a point x0 on the boundary ∂Ω such that the curvature
of ∂Ω at x0 is kmax, the maximal curvature of the boundary. We choose our

ANNALES DE L’INSTITUT FOURIER
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boundary coordinates (s, t) (see Appendix B) such that x0 has coordinates
(0, 0). Let χ ∈ C∞0 (R) be a standard cut-off function:

χ(t) = 1 for |t| 6 1/2 , and suppχ ⊂ (−1, 1) .

Consider now the test function,

(2.1) φ(s, t;h) = φ0(t, s;h)χ(2s/|∂Ω|)χ(t/t0) ,

where, for α > 0 to be chosen below,

(2.2) φ0(t, s;h) := (2α)1/4h−5/16e−αs2/h1/4
eiξ0s/h1/2

u0(h−1/2t) .

and t0 is the constant from Appendix B defining the tubular neighborhood
of the boundary on which one may use boundary coordinates. The function
u0 satisfies, u′0(0) = 0, so in the gauge given by Definition 1.4, φ satisfies
the magnetic Neumann boundary condition and therefore φ ∈ D(H).

We will get an upper bound to the ground state energy of the Neumann
problem by calculating the Rayleigh quotient 〈φ | Hφ〉/‖φ‖2 for a suitable
φ in the domain of H. Actually, one could also work with φ in the form
domain of the corresponding quadratic form qH. From now on, we fix the
gauge such that this property is satisfied.

Then

〈φ | Hφ〉 =
∫ |∂Ω|/2

−|∂Ω|/2

∫ ∞

0

{
|(hDt − Ã2)φ|2

+(1− tκ(s))−2|(hDs − Ã1)φ|2
}

(1− tκ(s)) ds dt .

Now, using the decay properties of u0 and the exponential decay of the
Gaussian, we first get:

〈φ | Hφ〉 =
∫ |∂Ω|/2

−|∂Ω|/2

∫ ∞

0

{
|(hDt)φ0|2 + (1− tκ(s))−2|(hDs − Ã1)φ0|2

}
× (1− tκ(s))χ(2s/|∂Ω|)2 χ(t/t0)2 ds dt+O(h∞) .

TOME 56 (2006), FASCICULE 1



8 Soeren FOURNAIS & Bernard HELFFER

Again using the properties of u0 (see (A.15)) and of the Gaussian, we get

〈φ | Hφ〉 = h−5/8
√

2α
∫ |∂Ω|/2

−|∂Ω|/2

∫ ∞

0

e−2αs2/h1/4
h|u′0(h−1/2t)|2

× (1− tκ(s)) ds dt

+ h−5/8
√

2α
∫ |∂Ω|/2

−|∂Ω|/2

∫ ∞

0

e−2αs2/h1/4
|u0(h−1/2t)|2

×
∣∣∣h1/2ξ0 + i2αsh3/4 + t(1− t

2
κ(s))

∣∣∣2(2.3)

× (1− tκ(s))−1 χ(2s/|∂Ω|)2 χ(t/t0)2 ds dt

+O(h∞) .

It is then clear that by interpreting (1 − tκ(s))−1 as
∑

n>0 t
nκ(s)n and

computing term by term, the cut-off function in t does not affect the com-
putation modulo O(h∞). So we get

〈φ | Hφ〉 ∼ h−5/8
√

2α
∫ |∂Ω|/2

−|∂Ω|/2

∫ ∞

0

e−2αs2/h1/4
h|u′0(h−1/2t)|2

× (1− tκ(s)) ds dt

+ h−5/8
√

2α
∫ |∂Ω|/2

−|∂Ω|/2

∫ ∞

0

e−2αs2/h1/4
|u0(h−1/2t)|2(2.4)

×
∣∣∣h1/2ξ0 + i2αsh3/4 + t(1− t

2
κ(s))

∣∣∣2(∑
n

tnκ(s)n
)

× χ(2s/|∂Ω|)2 ds dt .

The next step is to replace κ(s) by its Taylor expansion κTay(s) at 0, which
leads to the equality (modulo O(h∞)):

〈φ | Hφ〉 ∼ h−5/8
√

2α
∫ +∞

−∞

∫ ∞

0

e−2αs2/h1/4
h|u′0(h−1/2t)|2

× (1− tκTay(s)) ds dt

+ h−5/8
√

2α
∫ +∞

−∞

∫ ∞

0

e−2αs2/h1/4
|u0(h−1/2t)|2(2.5)

×
∣∣∣h1/2ξ0 + i2αsh3/4 + t(1− t

2
κTay(s))

∣∣∣2
×
(∑

n

tnκTay(s)n
)
ds dt .

Here the cut-off functions have completely disappeared and the integration
in the s variable is now over (−∞,+∞).

ANNALES DE L’INSTITUT FOURIER
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We omit in what follows the reference to Taylor expansions written in
superscript “Tay” for κ and we use for shortness (1 − tκ(s))−1 instead of∑

n t
nκ(s)n in the next computations.

With the change of variables σ =
√

2αh−1/8s, τ = h−1/2t, we can con-
tinue the calculation as

〈φ | Hφ〉 ∼ h

∫ +∞

−∞

∫ ∞

0

e−σ2
|u′0(τ)|2

(
1− h1/2τκ(h1/8σ√

2α
)
)
dσ dτ

+ h

∫ +∞

−∞

∫ ∞

0

e−σ2
|u0(τ)|2

×
∣∣∣ξ0 + τ(1− h1/2τ

2
κ(h1/8σ√

2α
)) + i

√
2αh3/8σ

∣∣∣2
× (1− h1/2τκ(h1/8σ√

2α
))−1 dσdτ

= h
{
T1 + T2 + T3 + T4 + T5 +O(h

7
8 )
}
,

with (using that κ′(0) = 0, since κ(0) = kmax)

T1 =
∫ +∞

−∞
e−σ2

∫ ∞

0

|u′0(τ)|2 + (ξ0 + τ)2|u0(τ)|2 dτ dσ ,

T2 = −h1/2

∫ +∞

−∞

∫ ∞

0

e−σ2
τ |u′0(τ)|2

(
κ(0) +

1
2
κ′′(0)

h1/4σ2

2α

)
dτ dσ ,

T3 = 2αh3/4

∫ +∞

−∞

∫ ∞

0

e−σ2
|u0(τ)|2σ2 dτ dσ ,

T4 = h1/2

∫ +∞

−∞

∫ ∞

0

e−σ2
|u0(τ)|2(ξ0 + τ)2τ

(
κ(0) +

1
2
κ′′(0)

h1/4σ2

2α

)
dτ dσ ,

T5 = −h1/2

∫ +∞

−∞

∫ ∞

0

e−σ2
|u0(τ)|2(ξ0 + τ)τ2

(
κ(0) +

1
2
κ′′(0)

h1/4σ2

2α

)
dτ dσ .

Therefore, up to O(h
15
8 ), we get the equivalence

〈φ | Hφ〉 ∼ h
{
S0 + h1/2S1/2 + h3/4S3/4

}
,

TOME 56 (2006), FASCICULE 1



10 Soeren FOURNAIS & Bernard HELFFER

with

S0 = Θ0

∫
e−σ2

dσ ,

S1/2 = κ(0)
∫
e−σ2

dσ
[
−
∫ ∞

0

τ |u′0(τ)|2 dτ +
∫ ∞

0

τ(ξ0 + τ)2|u0(τ)|2 dτ

−
∫ ∞

0

τ2(ξ0 + τ)|u0(τ)|2 dτ
]
,

S3/4 = 2α
∫
σ2e−σ2

dσ + κ′′(0)
∫

σ2

4α
e−σ2

dσ
[
−
∫ ∞

0

τ |u′0(τ)|2 dτ

+
∫ ∞

0

τ(ξ0 + τ)2|u0(τ)|2 dτ −
∫ ∞

0

τ2(ξ0 + τ)|u0(τ)|2 dτ
]
.

From the known moments of u0 (see Lemma A.1 below or Fournais-Helffer
[11, (6.15), (6.16) and (6.17)]) we have

∫ ∞

0

τ |u0(τ)|2 dτ =
√

Θ0,

∫ ∞

0

τ(ξ0 + τ)2|u0(τ)|2 dτ =
1
2
(C1 + Θ3/2

0 ),∫ ∞

0

τ |u′0(τ)|2 dτ = C1 +
Θ3/2

0

2
,

∫ ∞

0

τ2(ξ0 + τ)|u0(τ)|2 dτ =
C1

2
+ Θ3/2

0 .

So with I0 =
∫
e−σ2

dσ, I2 =
∫
σ2e−σ2

dσ, we get

S0 = Θ0I0 ,

S1/2 = κ(0)I0
[
− (C1 +

Θ3/2
0

2
) +

1
2
(C1 + Θ3/2

0 )− (
C1

2
+ Θ3/2

0 )
]

= −κ(0)I0(C1 + Θ3/2
0 ) ,

S3/4 = I2

[
2α− κ′′(0)

4α
(C1 + Θ3/2

0 )
]
.

Therefore, we finally find

〈φ | Hφ〉 = hΘ0I0 − h3/2κ(0)I0(C1 + Θ3/2
0 )

+ h7/4I2
[
2α− κ′′(0)

4α
(C1 + Θ3/2

0 )
]
+O(h

15
8 ) .

ANNALES DE L’INSTITUT FOURIER
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We now compute the asymptotics of ‖φ‖22. Along the same lines as the
previous computations and with the same conventions, we obtain

‖φ‖22 ∼
∫ +∞

−∞

∫ ∞

0

e−σ2
|u0(τ)|2(1− h1/2τκ(h1/8σ√

2α
)) dσdτ +O(h∞)

=
∫ +∞

−∞
e−σ2

(
1− h1/2κ(h1/8σ√

2α
)
∫ ∞

0

τ |u0(τ)|2 dτ
)
dσ +O(h∞)

=
∫ +∞

−∞
e−σ2

(
1− h1/2κ(h1/8σ√

2α
)
√

Θ0

)
dσ +O(h∞)

= I0 − h1/2
√

Θ0κ(0)I0 − h3/4
√

Θ0
κ′′(0)
4α

I2 +O(h
7
8 ) .

So the Rayleigh quotient becomes

〈φ | Hφ〉
‖φ‖22

= Θ0h− κ(0)C1h
3/2 + (2α− κ′′(0)C1

4α
)
I2
I0
h7/4 +O(h

15
8 ) .

Since the curvature κ has a maximum at s = 0, we see that κ′′(0) 6 0.
We recall that φ depends on α and that we can now optimize over α. We
recover first the fact that the term in O(h

3
2 ) is obtained without having to

specify α. In the case when k2 = −κ′′(0) 6= 0, which is our main interest,
the optimal choice of α is

α =

√
k2C1

8
and we get

〈φ | Hφ〉
‖φ‖22

= Θ0h− κ(0)C1h
3/2 +

√
k2C1

2
I2
I0
h7/4 +O(h

15
8 ) .

In the case where κ′′(0) = 0, we can choose α as small as we wish and
therefore get

〈φ | Hφ〉
‖φ‖22

= Θ0h− κ(0)C1h
3/2 + o(h7/4) .

Using

I0 =
∫
e−σ2

dσ =
√
π , I2 =

∫
σ2e−σ2

dσ =
√
π

2
,

we therefore get the result of the theorem. �

Remark 2.3. — In the case where k2 = 0, one would expect that the
error term o(h7/4) could be replaced by (the stronger) O(hs) for some s ∈
(7/4, 2] depending on the order to which the Taylor expansion of κ(s)−κ(0)
vanishes at 0. We will not pursue this further. See however also Remark 4.6.
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12 Soeren FOURNAIS & Bernard HELFFER

3. Grushin type approach for upper bounds

3.1. Main statements

In this section we will prove the following accurate upper bound to the
n-th eigenvalue of H.

Theorem 3.1. — Let Ω satisfy the assumptions of Theorem 1.1, and
let n ∈ N \ {0}. There exist a sequence

{
ζ
(n)
j

}∞
j=0

⊂ R and a sequence of

functions {φ(n)
j }∞j=0 in D(H) such that, for all N > 0, there exists M > 0

such that, if

(3.1) z
(n)
M (h) = Θ0h− kmaxC1h

3/2

+ C1

√
3
2
Θ1/4

0

√
k2(2n− 1)h7/4 + h15/8

M∑
j=0

hj/8ζ
(n)
j ,

and

(3.2) φ
(n)
M (x, h) =

M∑
j=0

hj/8φ
(n)
j (x) ,

then (for h↘ 0)

(3.3) ‖(H− z
(n)
M )φ(n)

M ‖L2 = O(hN )‖φ(n)
M ‖L2 .

With the notations of the theorem, we define z(n)
∞ (h) as the asymptotic

sum

(3.4) z(n)
∞ (h) := Θ0h− kmaxC1h

3/2

+ C1

√
3
2
Θ1/4

0

√
k2(2n− 1)h7/4 + h15/8

∞∑
j=0

hj/8ζ
(n)
j .

Consequently, z(n)
M (h) is the truncated sum of z(n)

∞ (h) at rank M .

Remark 3.2. — The lowest approximate eigenvalue z(1)(h) agrees with
the calculation from Bernoff-Sternberg [3] (see also [32]) up to the order
that they calculate (term of order h7/4).

Since the operator H is self-adjoint, we can deduce the existence of eigen-
values near the points with asymptotics z(n)

∞ .

Corollary 3.3. — Let n ∈ N\{0}, M ∈ N and let z(n)
M (h) be as above.

Then there exist C > 0 and h0 > 0 such that

dist(z(n)
M (h),Spec(H)) 6 Ch

15+M
8 , ∀h ∈ (0, h0] .
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Proof. — This is clear by the Spectral Theorem. �

Remark 3.4. — In particular, the upper bound announced in Theo-
rem 1.1 is a direct consequence of Theorem 3.1.

Proof of Theorem 3.1. — The proof is fairly long; so we will split it
in different steps described in the next subsections. From now on we will
assume that the maximum of κ, kmax , is attained at s = 0 .

3.2. Expanding operators in fractional powers of h

From [15, (B.8)] we get that the operator H in boundary coordinates
becomes

H = a−1
[
(hDs − Ã1)a−1(hDs − Ã1) + (hDt − Ã2)a(hDt − Ã2)

]
,(3.5)

with

a(s, t) = 1− tκ(s) .(3.6)

Remark 3.5. — The representation of H given in (3.5) is only defined on
functions with support in [0, t0) × [−|∂Ω|/2,+|∂Ω|/2]. We will only apply
our operator on functions which are a product of cut-off functions with
functions in the form of linear combination of terms like hνw(h−

1
4 s, h−

1
2 t),

with w in S(R × R+). These functions are consequently O(h∞) outside
a fixed neighborhood of (0, 0). This is similar to the calculations in the
previous section. We will do the computations formally in the sense that:

• Everything is determined modulo O(h∞);
• a−1(s, t) will be replaced by

∑
n>0(tκ(s))

n;
• κ(s) will be replaced by its Taylor’s expansion.

For any n and N , we will find M and construct trial functions φ̃(n)
M

(expressed in boundary coordinates (s, t) and in the form (3.2)), localized
near (s, t) = (0, 0) and satisfying

‖(H− z
(n)
M )φ̃(n)

M ‖L2 = O(hN )‖φ̃(n)
M ‖L2 , (hDt − Ã2)φ̃

(n)
M

∣∣
(s,t)=(s,0)

= 0 .

(3.7)

By changing back to the original coordinates, this clearly implies (3.3) and
that the involved functions satisfy the magnetic Neumann condition (and
therefore lies in D(H)). We will omit the tilda’s in the following and thus
denote by φ the trial function in boundary coordinates.
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14 Soeren FOURNAIS & Bernard HELFFER

Using Definition 1.4, we work in the gauge where,

Ã1 = −ta2(s, t) , Ã2 = 0 ; a2(s, t) = 1− tκ(s)/2 .

We make the scaling τ = h−1/2t, σ = h−1/8s. Then H becomes

(3.8) P̃ = ã−1(h7/8Dσ + h1/2τ ã2)ã−1(h7/8Dσ + h1/2τ ã2)

+ hã−1Dτ ãDτ ,

with

ã(σ, τ) = 1− h1/2τκ(h1/8σ) , ã2(σ, τ) = 1− h1/2τκ(h1/8σ)/2 .(3.9)

Thus

h−1P̃ = ã−1(h3/8Dσ + τ ã2)ã−1(h3/8Dσ + τ ã2) + ã−1Dτ ãDτ .

We now define

P = e−iσξ0/h3/8
h−1P̃ eiσξ0/h3/8

−Θ0 ,

and get, after removing the tilda’s from the a’s,

(3.10) P = a−1
(
(τ + ξ0) + h3/8Dσ − τ(1− a2)

)
× a−1

(
(τ + ξ0) + h3/8Dσ − τ(1− a2)

)
+ a−1DτaDτ −Θ0 .

We assume that κ is C∞ and has a non-degenerate maximum at s = 0.
Then, in the sense of asymptotic series in powers of h

1
8 , we obtain

a(σ, τ) = 1− h1/2τκ(h1/8σ)

= 1− h1/2τκ(0)− τ

∞∑
j=2

h1/2+j/8σ
jκ(j)(0)
j!

,(3.11)

and

a2(σ, τ) = 1− h1/2τ
κ(h1/8σ)

2

= 1− h1/2τ
κ(0)

2
− τ

∞∑
j=2

h1/2+j/8σj κ
(j)(0)
2(j!)

.(3.12)

From the asymptotics of a and a2, we get (remember the definition of k2

from (1.5))

a(σ, τ)−1 = 1 + h1/2τκ(0)− τh3/4σ
2k2

2
+O(h7/8) ,

a(σ, τ)−2 = 1 + 2h1/2τκ(0)− τh3/4σ2k2 +O(h7/8) ,(3.13)

−τ(1− a2(σ, τ)) = −h1/2τ2κ(0)
2

+ τ2h3/4σ2 k2

4
+O(h7/8) .
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Thus, we can write

P = P0 + h3/8P1 + h1/2P2 + h3/4P3 + h7/8Q(h) ,(3.14)

where

P0 = D2
τ + (τ + ξ0)2 −Θ0 ,(3.15)

P1 = 2Dσ(τ + ξ0) ,(3.16)

P2 = −2τ2κ(0)
2

(τ + ξ0) + 2τκ(0)(τ + ξ0)2

+ κ(0)(τD2
τ −DττDτ )

= κ(0)
(
2τ(τ + ξ0)2 − τ2(τ + ξ0)

)
+ iκ(0)Dτ ,(3.17)

P3 = D2
σ − τσ2k2(τ + ξ0)2 + 2τ2σ2 k2

4
(τ + ξ0)

− k2σ
2

2
(τD2

τ −DττDτ )

= D2
σ −

(
2τ(τ + ξ0)2 − τ2(τ + ξ0)

)k2σ
2

2
− k2σ

2

2
iDτ ,(3.18)

and where Q(h) admits a complete expansion:

Q(h) ∼
∞∑

j=0

hj/8Qj .

We define δP by

δP = P − P0 ,(3.19)

We search for functions φ(n)(h) having an asymptotic expansion in h1/8

and such that

(P − z(n)(h) + Θ0h

h
)φ(n)(h) ∼ 0 , Dτφ

(n)(h;σ, 0) = 0 .(3.20)

The constructed functions will have sufficient decay properties to allow
interpreting (3.20) in the L2 sense and therefore, after multiplying by the
cutoff appearing in (2.1), we get (3.7) (which implies (3.3)).

3.3. Reduction to the boundary

We will now explain the strategy initiated by Grushin [12] (and references
therein) and Sjöstrand in the context of hypoellipticity [31]. Here we use
this strategy for producing good trial functions and thereby results for the
magnetic Neumann Laplacian.
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16 Soeren FOURNAIS & Bernard HELFFER

Let us define the operators R+
0 , R−0 and E0 by:

R+
0 : S(Rσ) → S(Rσ × (R+)τ )(3.21)

φ(σ) 7→ φ(σ)u0(τ) = φ⊗ u0 ,

R−0 : S(Rσ × (R+)τ ) → S(Rσ)(3.22)

f 7→
∫ ∞

0

f(σ, τ)u0(τ) dτ ,

E0 : S(Rσ × (R+)τ ) → S(Rσ × (R+)τ )(3.23)

f ⊗ φ 7→

{
f ⊗ (P−1

0 φ) , if φ ⊥ u0 ,

0 , if φ ‖ u0 .

Here we abused notation and considered P0 as an operator on L2((R+)τ )
in order to define E0. That E0 respects the Schwartz space S(Rσ × (R+)τ )
follows from Lemma A.5.

Notice that R+
0 is the Hilbertian adjoint of R−0 (seen as an operator

from L2(Rσ × R+
τ ; dσdτ) into L2(Rσ)). On the other hand (P − z) is for

z ∈ R formally selfadjoint for the original (h-dependent) L2 scalar product
inherited from the change of variable z 7→ (s, t) 7→ (σ, τ) (that is associated
to the measure (1−h− 1

2 τκ(h−
1
4σ)dσdτ)) but not for the usual L2 associated

to the standard Lebesgue measure dσdτ .
With the above notations we define matrices of operators

P(z) =
(
P − z R+

0

R−0 0

)
, E0 =

(
E0 R+

0

R−0 0

)
.(3.24)

These operators act on S(Rσ × (R+)τ )×S(Rσ). Actually we should better
think of operators applied to formal expansions in suitable fractional powers
of h with coefficients in these S spaces. These infinite formal expansions
will then be truncated at a suitable rank for defining our quasimodes. So
we prefer to write formal expansions to infinite order, having in mind that
we could actually go back to truncated expansions if we want a given,
arbitrarily small, remainder estimate.

We note first that:

(3.25)
(
P0 R+

0

R−0 0

)
◦ E0 = I .

An easy calculation gives then:

P(z)E0 = I +K ,
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where

K =
(

(δP − z)E0 (δP − z)R+
0

0 0

)
.

If we look for z = z(h) satisfying

(3.26) z(h) ∼
∑
`>3

ẑ`h
`
8 ,

and having in mind the expansion (3.14), we observe that (δP − z) =
O(h3/8) , when acting on a fixed function in S(Rσ×(R+)τ ) and can actually
be expanded in powers of h

1
8 , starting from h

3
8 (P1 − ẑ3). So, if we define

Q∞ ∼
+∞∑
j=0

(−1)jKj ,

then the operator is well defined (after reordering) as a formal expansion
in powers of h

1
8 and

P(z)E0Q∞ ∼ I .(3.27)

Now,

Kj ∼
(

[(δP − z)E0]j [(δP − z)E0]j−1(δP − z)R+
0

0 0

)
,

and therefore, if we write

E(z) := E0Q∞ =
(
E∞(z) E+

∞(z)
E−∞(z) E±∞(z)

)
,

we get, in the sense of formal expansions in powers of h
1
8 ,

(P − z)E∞(z) +R+
0 E

−
∞(z) ∼ 1 ,(3.28a)

(P − z)E+
∞(z) +R+

0 E
±
∞(z) ∼ 0 ,(3.28b)

R−0 E∞(z) ∼ 0 ,(3.28c)

R−0 E
+
∞(z) ∼ 1 .(3.28d)

So, in particular, if σ 7→ φ∞(σ;h) is a function(1) such that

(3.29) E±∞(z)φ∞ ∼ 0 ,

(1) More precisely φ∞( · ; h) ∼
∑

j∈N h
j
8 φj( · ) , so all the computations have to be ex-

panded in powers of h
1
8 .
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18 Soeren FOURNAIS & Bernard HELFFER

then inserting φ∞ in (3.28b) (i.e. inserting
(

0
φ∞

)
in (3.27)), we find

(P − z)E+
∞(z)φ∞ ∼ 0 ,(3.30)

where everything is well defined modulo O(h∞) .

3.4. Construction of trial functions

From the above, we see that E±∞(z) is the following asymptotic series,

E±∞(z) =
∞∑

j=1

(−1)jR−0 [(δP − z)E0]j−1(δP − z)R+
0 .(3.31)

We look as before for

φ∞(σ;h) ∼
∞∑

j=0

φj(σ)hj/8 ,

z∞(h) ∼ h3/8z1 + h1/2z2 + h3/4z3 + h7/8
∞∑

j=0

ζjh
j/8 ,

such that

(3.32) E±∞(z∞(h))φ∞(σ;h) ∼ 0 ,

in the sense of asymptotic series in powers of h
1
8 . Here the functions φj are

supposed to be in S(Rσ).

Lemma 3.6. — For each n ∈ N \ {0}, there exists a unique solution
(z(n)(h), φ(n)(h)) to equation (3.32), in the sense of asymptotic series, and
such that

z(n)(h) ∼ C1

√
3
2

√
Θ0k2 (2n− 1)h3/4 + h7/8

∞∑
j=0

ζ
(n)
j hj/8 .

Conversely, for any pair (z(h), ϕ(h)) such that (3.32) is satisfied, with
z(h) ∼ Ch

3
4 + h

7
8
∑

j>0 ζjh
j
8 and ϕ(h) ∼

∑
j>0 h

j
8ϕj , there exist n and

c(h) ∼
∑

j cjh
j
8 such that z(h) = z(n)(h) and ϕ(h) = c(h)φ(n)(h) .

Proof of Lemma 3.6. — Let us write

E±∞(z∞(h)) ∼ h3/8E1 + h1/2E2 + h3/4E3 + h7/8
∞∑

j=0

hj/8Fj .(3.33)
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The terms in this sum will be given in (3.34), (3.35), (3.38), and (3.45)
below. Using the definitions (3.14) and (3.19), and the fact that R−0 E0 = 0
and E0R

+
0 = 0, we get modulo terms of order O(h

7
8 ) ,

E±∞(z∞(h)) ∼ −R−0
(
h3/8(P1 − z1) + h1/2(P2 − z2) + h3/4(P3 − z3)

)
R+

0

+ h
3
4R−0 P1E0P1R

+
0 +O(h7/8) .

Since also R−0 (τ + ξ0)R+
0 = 0 , we find, using (3.16),

E1 = −R−0 (P1 − z1)R+
0 = z1 .(3.34)

Furthermore, using again (3.17),

E2 = −R−0 (P2 − z2)R+
0 = z2 − κ(0)(I1,1 + I1,2) ,

with

I1,1 =
∫ ∞

0

[2τ(τ + ξ0)2 − τ2(τ + ξ0)]u2
0(τ) dτ ,

and

I1,2 = i

∫ ∞

0

u0(τ)Dτu0(τ) dτ .

Using Proposition A.2, we get

I1,1 + I1,2 = −C1 ,

and therefore

E2 = z2 + κ(0)C1 .(3.35)

The term E3 becomes, inserting P1 and P3 from (3.16) and (3.18),

E3 = −R−0 (P3 − z3)R+
0 +R−0 P1E0P1R

+
0

= z3 −D2
σ +

k2σ
2

2
(I1,1 + I1,2) + 4D2

σI2 ,(3.36)

where we have introduced

I2 =
∫ ∞

0

(τ + ξ0)u0(τ)P−1
0 (τ + ξ0)u0(τ) dτ .(3.37)

Using Proposition A.2 and Proposition A.3, we have

1− 4I2 = 3C1

√
Θ0 , I1,1 + I1,2 = −C1 ,

and we therefore get

E3 = z3 − 3C1

√
Θ0D

2
σ − C1

k2σ
2

2
.(3.38)

Remember that κ(s) has a non-degenerate maximum at s = 0, so k2 =
−κ′′(0) > 0.

TOME 56 (2006), FASCICULE 1



20 Soeren FOURNAIS & Bernard HELFFER

The first terms. In order to get the equation (3.32) to be satisfied, we
choose

z1 = 0 , z2 = −κ(0)C1 ,(3.39)

which implies

E1 = 0 , E2 = 0 .(3.40)

With this choice, (3.32) becomes

0 ∼ h3/4E3φ0 +O(h7/8) .

So we determine z3 and φ0 by

(3.41) E3φ0 = 0 .

Let us solve the equation E3φ = 0 . It reads, with k2 = −κ′′(0) ,

z3φ = C1(3
√

Θ0D
2
σ +

k2σ
2

2
)φ .

So, after the scaling s̃ = 4
√
k2/6

√
Θ0 σ , we find that z3 should be an

eigenvalue of the harmonic oscillator

C1

√
3
2

√
Θ0k2

(
D2

s̃ + s̃2
)
.

Thus the possible values of z3 are:

z
(n)
3 = C1

√
3
2

√
Θ0k2 (2n− 1) , where n ∈ N \ {0} .(3.42)

In particular, using the inequality 3C1

√
Θ0 = 1 − 4I2 < 1 (see Proposi-

tion A.3), we get that z(1)
3 is smaller than the value in Theorem 2.1.

Remark 3.7. — A second look at the calculations above (comparing
with Section 2) shows why Theorem 2.1 does not give the correct ground
state energy to order h7/4. By using a trial state which has the simple form
(2.1) and (2.2), we would not see the term R−0 P1E0P1R

+
0 in the first line of

(3.36) and therefore the last term, 4D2
σI2, would be missing in the second

line of (3.36). Thus the harmonic oscillator discussed above would become

D2
s̃ +

k2C1

2
s̃2 ,

instead. This harmonic oscillator has ground state energy
√
k2C1/2 in

agreement with the result of Theorem 2.1.
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The iteration procedure. Let us define Π to be the orthogonal pro-
jection on {φ0}⊥. Notice that φ0 depends on the n chosen in (3.42) even
though we do not explicitly recall this dependence in the notation. We will
choose φj such that

(3.43) φj ⊥ φ0 for all j > 0 .

The term of order h
3
4+ j

8 in (3.32) becomes

(3.44) E3φj +
j−1∑
k=0

Fkφj−1−k = 0 .

Notice that

(3.45) Fj = ζj −R−0 QjR
+
0 + F̃j ,

where F̃j only depends on z1, z2, z3 and {ζk}j−1
k=0. By taking the scalar

product with φ0 in the equation (3.44), we therefore get, by using (3.41)
and the property that E3 is self adjoint,

ζj−1‖φ0‖2 = 〈φ0 , R
−
0 Qj−1R

+
0 φ0〉 − 〈φ0 | F̃j−1φ0〉 − 〈φ0 |

j−2∑
k=0

Fkφj−1−k〉 .

Since φ0 6= 0, this equation determines ζj−1 ∈ C as a function of z1, z2, z3,
{ζk}j−2

k=0 and {φk}j−1
k=0 . The property that ζj−1 ∈ R will be only proved

later.
Upon projecting the equation (3.44) on {φ0}⊥, and remembering the

choice (3.43), we get

(3.46) ΠE3Πφj = −Π
( j−1∑

k=0

Fkφj−1−k

)
.

Since ΠE3Π is invertible on {φ0}⊥, (3.46) together with (3.43) deter-
mines φj .

Uniqueness. Suppose that z1, z2 are not given by the choice in (3.39).
For concreteness, let us suppose that z1 6= 0. Then the equation (3.32)
implies that φ ∼ 0. Thus (3.39) is the only nontrivial choice.

Furthermore, in the construction above we imposed that φj ⊥ φ0 for all
j > 0 . Suppose we do not impose that condition. Let φj be the solution
constructed above and let φj be the new solution. Then we can write each
φj as

φj = φ′j + cjφ0 , with φ′j ⊥ φ0, cj ∈ C .(3.47)

TOME 56 (2006), FASCICULE 1



22 Soeren FOURNAIS & Bernard HELFFER

We now write

φ(h) ∼ φ0 +
∑
j>1

hj/8φj ∼ c(h)φ0 +
∑
j>1

hj/8φ′j ,

with

c(h) ∼ 1 +
∑
j>1

hj/8cj ,

and

φ′j ⊥ φ0 .

By linearity, we therefore find that φ(h)/c(h) is the solution φ0+
∑

j>1 h
j/8φj

constructed above.
This finishes the proof of Lemma 3.6 �

Using Lemmas 3.6, A.4, and A.5, we can finish the proof of Theorem 3.1.
Let (z(n)(h), φ(n)(h)) be one of the formal solutions from Lemma 3.6. By
stopping the formal sum at a finite number of terms we obtain partial sums
(z(n)

M (h), φ(n)
M (h)), solutions to

(3.48) E±M (z(n)
M (h))φ(n)

M (h) = hMRM (h) ,

where E±M is also defined by stopping the expansion of E±∞. Since the φj ’s
are Schwartz functions and all involved operators respect the space S (they
are differential operators whose coefficients are smooth with polynomially
bounded derivatives), the remainderRM (h) in (3.48) is bounded in S. Using
Lemma A.5, Lemma A.4 and the fact that all terms in E+

M preserve the
Schwartz space (differential operators with polynomially bounded, smooth
derivatives), we see that E+

Mφ
(n)
M (h) defines a finite sum, whose coefficients

are in the space S(R×R+ ). Thus, the procedure described in Subsection 3.3
above (reduction to the boundary) gives a solution ψM (h) = E+

Mφ
(n)
M (h) to

the equation

(P − zM (h))ψM (h) = O(hM ) .

Here the right hand side is in S and controlled in O(hM ) for any semi-norm
on S, thus in particular in the L2 norm.

Moreover, H being selfadjoint, we can now prove that ζj ∈ R and this
finishes the proof of Theorem 3.1. �
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4. Space localization

In this section we will prove that the ground state is well localized both in
s and t. In the following Section 5 we will prove a similar (slightly weaker)
localization result in the frequency variable ξ corresponding to s.

4.1. Agmon estimates in the normal direction

If φ is a function with compact support in Ω, i.e. φ ∈ C∞0 (Ω), then∫
Ω

|(−ih∇−A)φ|2 dx =
∫

R2
|(−ih∇−A)φ|2 dx

> h‖φ‖2L2(R2) = h‖φ‖2L2(Ω) .(4.1)

Since 1 > Θ0 , this implies (compare 1 · h with Θ0 · h) that functions with
energy below our upper bounds from Theorem 3.1 cannot be localized in
the interior of Ω (i.e. away from the boundary), as h → 0 . The powerful
method of Agmon estimates can be applied to strengthen this property
into an exponential localization of the eigenfunctions (corresponding to
the bottom of the spectrum) in a neighborhood of the boundary. This is
the content of the following proposition.

Theorem 4.1 (Normal Agmon estimates). — Let h0 > 0,M ∈ (Θ0, 1).
Then there exists C,α > 0 and h1 ∈ (0, h0] such that if (uh)h∈(0,h0] is a
family of normalized eigenfunctions of Hh,Ω with corresponding eigenvalue
µ(h) satisfying µ(h) 6 Mh, then, for all h ∈ (0, h1],

(4.2)
∫

Ω

e2αdist(x,∂Ω)/h1/2(
|uh(x)|2 + h−1|(−ih∇−A)uh(x)|2

)
dx 6 C .

Proof. — The proof is similar to (but easier than) the proof of Theo-
rem 4.9 below. We omit the details and refer to Helffer-Morame [15, Sec-
tion 6.4, p. 621-623] or Helffer-Pan [17]. In [15] only the ground state is
considered, but it is immediate to see that the analysis goes through for
the eigenfunctions corresponding to higher eigenvalues. �

As a corollary, we get the weaker but useful estimate for uh near the
boundary.

Corollary 4.2 (Weak normal Agmon estimates). — Let the assump-
tions be as in Theorem 4.1. For any integer k, there exist C > 0 and h0,
such that

(4.3) ||dist(x, ∂Ω)kuh||L2(Ω) 6 C h
k
2 , ∀h ∈ (0, h0] .
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Remark 4.3. — The L2 statement in Theorem 4.1 can be converted to
an L∞ result using the Sobolev imbedding theorem. See [15, Theorem 6.3]
for details.

4.2. First lower bound

In order to get good localization properties of the eigenfunctions in the
variable parallel to the boundary (the s variable), we need to improve the
lower bound on the ground state energy from (1.7). We will prove the
following improvement of [15, Theorem 10.3].

Theorem 4.4. — Let Ω be a bounded region with smooth boundary
satisfying the assumptions of Theorem 1.1. Then

(4.4) µ(1)(h) > Θ0h− C1kmaxh
3/2 +O(h7/4) .

Proof. — Since Ω is bounded, we have kmax > 0. Using the results from
[14, Section 10], we may localize to the region near boundary points with
κ(s) > 0, so we may assume without loss of generality in the proof that
κ(s) > 0 for all s.

The proof of Theorem 4.4 is similar to the proof of [14, Theorem 10.3].
We just need to do one of the estimates slightly more carefully. In par-
ticular, the proof goes by comparison with the case of a disc. For a disc,
one can calculate the ground state energy with great precision by using the
rotational symmetry. This was carried through in [2]. We state one of their
results in the following form.

Theorem 4.5. — Let µ(1)(h, b,D(0, R)) be the ground state energy of
the operator in (1.1) in the case where curlA = b (independent of x ∈ Ω)
and Ω = D(0, R); the disc of radius R. Then there exists C > 0 such that
if

bR2/h > C ,

then

(4.5) µ(1)(h, b,D(0, R)) > Θ0bh− C1b
1/2h3/2/R− Ch2R−2 .

Notice that in the case of a disc, the curvature κ is constant, κ = R−1.
Let ρ > 0. We can find a sequence {sj,h}N(h)

j=0 in R/|∂Ω| and a parti-
tion of unity {χ̃j,h}N(h)

j=0 on R/|∂Ω| such that supp χ̃j,h ∩ supp χ̃k,h = ∅ if
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j /∈ {k − 1, k, k + 1} (with the convention that N(h)+1 = 0 , 0−1 = N(h)).
Furthermore, we may impose the conditions

(4.6)

supp χ̃j,h ⊂ sj,h + [−hρ, hρ] ,∑
j

χ̃2
j,h = 1 ,

∑
j

|∇χ̃j,h|2 6 Ch−2ρ .

We will always choose the sj,h such that |sj,h| 6 |∂Ω|/2 .
Let χ1, χ2 be a standard partition of unity on R:

χ2
1 + χ2

2 = 1 , suppχ1 ⊂ (−2, 2) , χ1 = 1 on a nbhd of [−1, 1] .(4.7)

Let us define
χj,h(s, t) = χ̃j,h(s)χ1(t/hρ) .

We will also consider χj,h as a function on Ω (by passing to boundary
coordinates) without changing the notation. For ψ ∈ D(H), we can write

(4.8) ψ =
∑

j

χ2
j,hψ + θ22,hψ ,

with

(4.9) θj,h(x) = χj(t(x)/hρ) , for j = 1, 2 .

We get by the ‘IMS’-formula:

〈ψ
∣∣Hψ〉 =

〈
ψ
∣∣H(∑

j

χ2
j,hψ + θ22,hψ

)〉
(4.10)

=
∑

j

〈χj,hψ
∣∣Hχj,hψ〉 − h2

∫
|∇χj,h|2|ψ|2 dx

+ 〈θ2,hψ
∣∣Hθ2,hψ〉 − h2

∫
|∇θ2,h|2|ψ|2 dx .(4.11)

In particular, for ψ = u
(1)
h being a normalized ground state wave function,

we get using the weak normal Agmon estimates (in the t variable) and the
condition ρ < 1/2 (we will choose ρ = 1/8 in the end).

(4.12) µ(1)(h) =
∑

j

〈χj,hu
(1)
h

∣∣Hχj,hu
(1)
h 〉+O(h2−2ρ) .

If |sj,h| > |∂Ω|/4, we have κ(sj,h) > δ > 0. Therefore we get from [14,
Proposition 10.5] that there exists a constant C > 0 such that for all j with
|sj,h| > |∂Ω|/4,

〈χj,hu
(1)
h

∣∣Hχj,hu
(1)
h 〉 >

(
Θ0h− C1(kmax + δ)h3/2 − C ′h5/3

)
‖χj,hu

(1)
h ‖2

>
(
Θ0h− C1kmaxh

3/2 − Ch7/4
)
‖χj,hu

(1)
h ‖2 .(4.13)
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For the remaining terms in (4.12), we will write the inner products,
〈· | ·〉, in boundary coordinates and compare with the similar term with
fixed curvature. Remember the gauge choice fixed in Definition 1.4. Define

Ã1(s, t) = −t(1− tκ(s)/2) , a(s, t) = 1− tκ(s) ,

and

Bj,h := 〈χj,hu
(1)
h |Hχj,hu

(1)
h 〉(4.14)

=
∫
e[χj,hu

(1)
h ](s, t) ds dt ,

with

(4.15) e[f ] := a−1|(hDs − Ã1)f |2 + a|hDtf |2 .

Similarly, we define

κj,h = κ(sj,h) , Ã1,j,h(s, t) = −t(1− tκj,h/2) , aj,h = 1− tκj,h ,

and

(4.16) Aj,h :=
∫
ej,h[χj,hu

(1)
h ](s, t) ds dt ,

with

(4.17) ej,h[f ] := a−1
j,h|(hDs − Ã1,j,h)f |2 + aj,h|hDtf |2 .

Then we will compare Bj,h and Aj,h. We clearly have

e[χj,hu
(1)
h ](s, t) = ej,h[χj,hu

(1)
h ](s, t) + f1(s, t) + f2(s, t) + f3(s, t) ,(4.18)

and

f1 = (a−1 − a−1
j,h)|(hDs − Ã1)χj,hu

(1)
h |2 + (a− aj,h)|hDt(χj,hu

(1)
h )|2 ,

f2 = a−1
j,h|(Ã1 − Ã1,j,h)χj,hu

(1)
h |2 ,

f3 = 2a−1
j,h Re

{
(Ã1 − Ã1,j,h)χj,hu

(1)
h (hDs − Ã1,j,h)χj,hu

(1)
h

}
.

Notice that for s ∈ sj,h + [−hρ, hρ] , we have, since κ′(0) = 0 ,

|κ(s)− κj,h| = |s− sj,h| ·
∣∣∣ ∫ 1

0

κ′((1− `)sj,h + `s) d`
∣∣∣

6 Chρ
(
|sj,h|+ hρ

)
.(4.19)

Thus,

|a− aj,h| = t|κ(s)− κj,h| 6 Chρ
(
|sj,h|+ hρ

)
t ,

|a−1 − a−1
j,h| 6 Chρ

(
|sj,h|+ hρ

)
t , for t < 2hρ .(4.20)
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We estimate, using (4.20), for any ε > 0 ,

|f1(s, t)| 6 Chρ
(
|sj,h|+ hρ

)
t e[χj,hu

(1)
h ](s, t)

6 C ′εh1/4+2ρ
(
|sj,h|+ hρ

)2
e[χj,hu

(1)
h ](s, t)

+ C ′ε−1h−1/4t2 e[χj,hu
(1)
h ](s, t)

6 C ′′εh1/4+2ρ
(
|sj,h|+ hρ

)2
ej,h[χj,hu

(1)
h ](s, t)

+ C ′ε−1h−1/4t2 e[χj,hu
(1)
h ](s, t) .(4.21)

We also estimate f2 and f3 by

f2(s, t) 6 Ch2ρt4|χj,hu
(1)
h |2 ,(4.22)

and

|f3(s, t)| 6 2Ct2hρ
(
|sj,h|+ hρ

)
a−1

j,h

∣∣∣χj,hu
(1)
h (hDs − Ã1,j,h)χj,hu

(1)
h

∣∣∣
6 C ′ε−1h−1/4t4|χj,hu

(1)
h |2

+ C ′εh1/4+2ρ
(
|sj,h|+ hρ

)2
ej,h[χj,hu

(1)
h ](s, t) .(4.23)

Thus, we get by combining (4.18) with (4.21), (4.22), and (4.23) and inte-
grating,

Bj,h > {1− Cεh1/4+2ρ
(
|sj,h|+ hρ

)2}Aj,h

− Cε−1h−1/4

∫
t2e[χj,hu

(1)
h ](s, t) ds dt

− C(h2ρ + ε−1h−1/4)
∫
t4|χj,hu

(1)
h | ds dt .(4.24)

From Theorem 4.5 we get the estimate

Aj,h >
(
Θ0h− C1κj,hh

3/2 − Ch2
)
‖χj,hu

(1)
h ‖2

>
(
Θ0h− C1

(
kmax − c0 min(|sj,h|2, 1)

)
h3/2 − Ch2

)
‖χj,hu

(1)
h ‖2 ,(4.25)

for some c0 > 0 , using the non-degeneracy of the maximum. Therefore,
using that |sj,h| 6 |∂Ω|/2 , we get that, for ε sufficiently small and ρ = 1/8 ,

(4.26)
{
1− Cεh1/4+2ρ

(
|sj,h|+ hρ

)2}Aj,h

>
(
Θ0h− C1kmaxh

3/2 − Ch7/4
)
‖χj,hu

(1)
h ‖2.
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Therefore, we get from (4.24) and (4.13), for the given choice of ε and
ρ = 1/8 , ∑

j

Bj,h >
(
Θ0h− C1kmaxh

3/2 − Ch7/4
)
‖u(1)

h ‖2

− Ch−1/4

∫ ∑
j

t2e[χj,hu
(1)
h ](s, t) ds dt

− Ch−1/4

∫
t4|u(1)

h |2 ds dt .(4.27)

The weak normal Agmon estimates and easy manipulations (as in [15,
Section 10]) give that the last two terms in (4.27) are bounded by Ch7/4.
Therefore, the theorem follows from (4.27) and (4.12), remembering that
ρ = 1/8 . �

Remark 4.6. — The above proof actually extends to the case where
kmax is a non-degenerate maximum of higher order, i.e.

κ(s) = kmax + as2N +O(|s|2N+1) ,

with N > 2 and a 6= 0. In that case (4.19) becomes

(4.28) |κ(s)− κj,h| 6 Chρ
(
|sj,h|2N−1 + hρ

)
.

This implies that (4.24) becomes

Bj,h >
{
1− Cεh1/4+2ρ

(
|sj,h|2N−1 + hρ

)2}Aj,h

− Cε−1h−1/4

∫
t2e[χj,hu

(1)
h ](s, t) ds dt

− C(h2ρ + ε−1h−1/4)
∫
t4|χj,hu

(1)
h |2 ds dt .(4.29)

But instead of (4.25), we get

(4.30) Aj,h >{
Θ0h− C1

(
kmax − c0 max(|sj,h|2N , 1)

)
h3/2 − Ch2

}
‖χj,hu

(1)
h ‖2 ,

Since |s|2N > |s|2(2N−1) for small s, this implies the result. Actually, in this
case one should be able to optimize the proof above (in particular choose
ρ < 1/8) and get a better error bound than O(h7/4) in (4.4).

It is convenient to have a lower bound of the operator H in terms of a
potential Uh. That is our next statement.
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Theorem 4.7. — There exist ε0 , C0 > 0 such that, if

κ̃(s) := kmax − ε0s
2 ,(4.31)

and

(4.32) Uh(x) =

{
h , if t(x) > 2h1/8 ,

Θ0h− C1κ̃(s)h3/2 − C0h
7/4 , if t(x) 6 2h1/8 ,

then

(4.33) 〈u
∣∣Hu〉 >

∫
Ω

Uh(x)|u(x)|2 dx ,

for all u ∈ D(H) and all h ∈ (0, 1] .

Remark 4.8. — It is very likely that one could replace κ̃ by κ in (4.32)
(see also [14, Proposition 10.2]). However, we do not need this improvement.

Proof. — With θ1,h , θ2,h as in (4.9) and ρ = 1/8, we have

〈u
∣∣Hu〉 = 〈θ1,hu

∣∣Hθ1,hu〉+ 〈θ2,hu
∣∣Hθ2,hu〉

− Ch7/4

∫
{h1/86t(x)62h1/8}

|u|2 dx .

Since 〈θ2,hu |Hθ2,hu〉 > h‖θ2,hu‖2, it therefore suffices to prove that

(4.34) 〈u |Hu〉 >
∫

Ω

Ũh(x)|u(x)|2 dx ,

for all u ∈ H1(Ω) and all h ∈ (0, 1], where

Ũh(x) =

{
γh , if t(x) > 2h1/8 ,

Θ0h− C1κ̃(s)h3/2 − C ′0h
7/4 , if t(x) 6 2h1/8 ,

(4.35)

and γ = (1 + Θ0)/2 and C ′0 is some positive constant.
Let ũ(1)

h be a ground state for H− Ũh with ground state energy µ̃(1)(h).
We will prove that µ̃(1)(h) > 0 .

Since Θ0 < γ < 1, the normal Agmon estimates, Theorem 4.1, are also
valid for ũ(1)

h .
Using the ‘IMS’-formula, and notations as in the proof of Theorem 4.4,

we get

µ̃(1)(h) >
∑

j

〈χj,hũ
(1)
h |

(
H− Ũh

)
χj,hũ

(1)
h 〉+

∫
(h− Ũh)|θ2,hũ

(1)
h |2 dx

− C h7/4

∫
{h1/86t(x)62h1/8}

|ũ(1)
h |2 dx .
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Modulo choosing C ′0 sufficiently big, it therefore suffices to prove that

(4.36)
∑

j

〈
χj,hũ

(1)
h |

(
H−Θ0h+ C1κ̃(s)h3/2

)
χj,hũ

(1)
h

〉
> −Ch7/4

∫ ∑
j

|χj,hũ
(1)
h |2 dx .

Since the normal Agmon estimates hold for ũ(1)
h , we can now go through the

proof of Theorem 4.4 with u(1)
h replaced everywhere by ũ(1)

h . We replace u(1)
h

everywhere by ũ(1)
h , in particular in the definition of Aj,h and Bj,h, which

are then denoted by Ãj,h and B̃j,h . In particular, we get as in (4.25)

(4.37) Ãj,h >{
Θ0h− C1

(
kmax − c0 min(|sj,h|2, 1)

)
h3/2 − Ch2

}
‖χj,hũ

(1)
h ‖2 .

So

(4.38)
{
1− Cεh1/4+2ρ

(
|sj,h|+ hρ

)2}Ãj,h

−
(
Θ0h− C1κ̃(s)h3/2

)
‖χj,hũ

(1)
h ‖2 > −Ch7/4‖χj,hũ

(1)
h ‖2 .

Therefore,∑
j

〈
χj,hũ

(1)
h |

(
H−Θ0h+ C1κ̃(s)h3/2

)
χj,hũ

(1)
h

〉
=
∑

j

(
B̃j,h −

(
Θ0h− C1κ̃(s)h3/2

)
‖χj,hũ

(1)
h ‖2

)
> −Ch7/4

∑
j

‖χj,hũ
(1)
h ‖2

− Ch−1/4

∫ ∑
j

t2 e[χj,hũ
(1)
h ](s, t) ds dt

− Ch−1/4

∫
t4 |ũ(1)

h |2 ds dt .

Using the weak normal Agmon estimates to bound the last terms by
O(h7/4), this implies (4.36) and therefore finishes the proof of Theorem 4.7.

�

4.3. Agmon estimates in the tangential direction

Theorem 4.7 can be used to obtain exponential localization estimates in
the tangential (s-)variable.
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Theorem 4.9 (Tangential Agmon estimates). — Let h0 > 0, M > 0.
Then there exist C, α > 0 and h1 ∈ (0, h0], such that if (uh)h∈]0,h0] is
a family of normalized eigenfunctions of H with corresponding eigenvalue
µ(h) satisfying the bound

µ(h) 6 Θ0h− C1kmaxh
3/2 +Mh7/4 , ∀h ∈ (0, h0] ,

and if χ1 ∈ C∞0 is the function from (4.7), then, for all h ∈ (0, h1],

(4.39)
∫

Ω

e2α|s(x)|2/h1/4
χ2

1(t(x)/h
1/8)

×
{
|uh(x)|2 + h−1

∣∣(−ih∇−A(x))uh(x)
∣∣2} dx 6 C .

Proof. — First we observe that there exists β > 0 such that, for all
S > 0, we have (with χ2 from (4.7))

µ(h)
∥∥∥χ2( s

Sh1/8 )χ1( t
h1/8 )eα|s|2/h1/4

uh

∥∥∥2

=
〈
χ2

2(
s

Sh1/8 )χ2
1(

t
h1/8 )e2α|s|2/h1/4

uh |Huh

〉
>
〈
χ2( s

Sh1/8 )χ1( t
h1/8 )eα|s|2/h1/4

uh |Hχ2( s
Sh1/8 )χ1( t

h1/8 )eα|s|2/h1/4
uh

〉
− Ch2

∫ ∣∣∣∇(χ2( s
Sh1/8 )χ1( t

h1/8 ))
∣∣∣2e2α|s|2/h1/4

|uh|2 dx

− α2βh3/2

∫
χ2

2(
s

Sh1/8 )χ2
1(

t
h1/8 )s2e2α|s|2/h1/4

|uh|2 dx .

(4.40)

But it follows from Theorem 4.7 and (4.9) that if α is chosen such that
βα2 6 ε0C1/2 , then

(4.41)
〈
χ2( s

Sh1/8 )χ1( t
h1/8 )eα|s|2/h1/4

uh

∣∣∣ (H− µ(h)− βα2s2h3/2
)

× χ2( s
Sh1/8 )χ1( t

h1/8 )eα|s|2/h1/4
uh

〉
> (

ε0C1S
2

2
− C0 −M)h7/4

∥∥χ2( s
Sh1/8 )χ1( t

h1/8 )eα|s|2/h1/4
uh

∥∥2
.

Therefore, it follows from (4.40) and (4.41) that, for α sufficiently small
and S sufficiently big,

(4.42)
∥∥χ2( s

Sh1/8 )χ1( t
h1/8 )eα|s|2/h1/4

uh

∥∥2

6 Ch1/4

∫ ∣∣∇(χ2( s
Sh1/8 )χ1( t

h1/8 ))
∣∣2e2α|s|2/h1/4

|uh|2 dx .
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Now,

h1/4

∫ ∣∣∇(χ2( s
Sh1/8 )χ1( t

h1/8 ))
∣∣2e2α|s|2/h1/4

|uh|2 dx 6 I + II ,(4.43)

with

I := C

∫
|χ′2( s

Sh1/8 )|2χ2
1(

t
h1/8 )e2α|s|2/h1/4

|uh|2 dx ,

and

II := C

∫
{h1/86t62h1/8}

e2α|s|2/h1/4
|uh|2 dx .

On {h1/8 6 t 6 2h1/8} we have |s| 6 |∂Ω|t/h1/8, and clearly |s| 6 |∂Ω|/2,
so we have

II 6 C

∫
{h1/86t62h1/8}

eα|∂Ω|2t/h3/8
|uh|2 dx .

By the normal Agmon estimates (Theorem 4.1), this implies that

II 6 C .

To estimate I, we use that |χ′2( s
Sh1/8 )|2e2α|s|2h1/4

is bounded uniformly in
h and get

I 6 C

∫
|uh|2 dx = C .

Since also χ2
1(

s
Sh1/8 )e2α|s|2/h1/4

is bounded uniformly in h, (4.42) implies
that ∥∥χ1( t

h1/8 )eα|s|2/h1/4
uh

∥∥2
6 C .(4.44)

The bound on∫
Ω

e2α|s|2/h1/4
χ2

1(t/h
1/8)

∣∣(−ih∇−A(x))uh(x)
∣∣2 dx

in (4.39) now follows in the same way by inserting (4.44) in (4.40). �

Corollary 4.10 (Weak tangential Agmon estimates). — Let the as-
sumptions be as in Theorem 4.9. Let χ ∈ C0(R), suppχ ⊂ (−t0, t0), with
the constant t0 from the definition of the boundary coordinates in Appen-
dix B. Then, for all k > 0, there exists C > 0 such that∫

Ω

|s(x)|kχ(t(x))|uh(x)|2 dx 6 Chk/8 .

The proof of the corollary is immediate.
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5. A phase space bound

For our analysis of the low lying eigenvalues of H, we need, apart from
the localizations in s and t, to have a precise localization in Ds. This is the
goal of the present section. Remember that we work in the gauge chosen
in Definition 1.4.

5.1. Main statement and main step of the proof

Theorem 5.1 (Localization in Ds). — Let M > 0, h0 > 0 and χ1, χ2 ∈
C∞(R) be a standard partition of unity as in (4.7). Let (s, t) be the bound-
ary coordinates introduced in Appendix B chosen such that κ(0) = kmax

and let ε in (0, 3/8). Then for all N > 0 there exists CN > 0 such that
if (uh)h∈(0,h0] is a family of normalized eigenfunctions of H = H(h) with
eigenvalue µ(h) satisfying

µ(h) 6 Θ0h− C1kmaxh
3/2 +Mh7/4 ,(5.1)

and the operator Ws acting on functions localized near the boundary is
defined by

(5.2) Wsχ1(4t/t0)

= χ1(4s/|∂Ω|)χ2

(
|h1/2Ds − ξ0|

hε

)
χ1(4s/|∂Ω|)χ1(4t/t0)

with t0 from (B.1), then

(5.3)
∥∥Wsχ1(4t/t0)uh

∥∥
L2 6 CNh

N .

and ∣∣〈Wsχ1(4t/t0)uh

∣∣ H(h)Wsχ1(4t/t0)uh

〉∣∣ 6 CNh
N .(5.4)

Let us be more explicit about the meaning of the operator Wsχ1(t/t0) .
On the support of t 7→ χ1(4t/t0), we can use boundary coordinates (s, t)
(see Appendix B). Thus, for each φ ∈ L2(Ω), f(s, t) := χ1(4t/t0)φ is a
|∂Ω|-periodic function in s. After multiplication by χ1(4s/|∂Ω|) we find a
function with support in (−|∂Ω|/2, |∂Ω|/2)×R+ which we extend by zero
to a function (with compact support) on R × R+. This function we still
denote by χ1(4s/|∂Ω|)χ1(t/t0)φ. On R × R+ the meaning of the operator
χ2(|h1/2Ds − ξ0|/hε) is obvious (for example using the Fourier transfor-
mation). After multiplying a second time by χ1(4s/|∂Ω|) we get a new
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function χ1(4s/|∂Ω|)χ2(|h1/2Ds − ξ0|/hε)χ1(4s/|∂Ω|)χ1(t/t0)φ with sup-
port in (−|∂Ω|/2, |∂Ω|/2)×R+ which we may reinterpret as a function on
a neighborhood of the boundary of Ω, expressed in boundary coordinates.

Thus, Wsχ1(t/t0) is an h-pseudodifferential operator (or rather
h1/2−ε-pseudodifferential operator). We will use elementary commutation
properties of such operators. The relevant results (and much more) can be
found in introductions to the subject, such as [10] and [28].

Remark 5.2. — As a shorter notation, instead of (5.3) and (5.4) we will
write

‖Wsχ1(4t/t0)uh

∥∥
L2

+
∣∣〈Wsχ1(4t/t0)uh

∣∣ H(h)Wsχ1(4t/t0)uh

〉∣∣ = Ounif(h∞) .

Here the subscript ‘unif’ is included to remind us that the constants (in
(5.3) and (5.4)) are uniform for eigenfunctions corresponding to eigenvalues
in a suitable energy interval (as given in (5.1)).

Proof of Theorem 5.1. — Let 0 < δ < 1/2 and define W , χs, χs,0, χt,
and χ0 by

W := χ2

(
|h1/2Ds − ξ0|/hε

)
, χt := χ1(t/h1/2−δ) ,(5.5)

χ0 := χ1(4t/t0) , χs,0 := χ1(4s/|∂Ω|) ,(5.6)

χs := χ1(s/h1/8−δ) .

We will choose δ small such that:

(5.7) 0 < δ < ( 3
8 − ε)/4 .

By using the normal Agmon estimates (Theorem 4.1), it suffices to prove
the following localized versions of (5.3) and (5.4):

‖Wsχtuh‖L2 = Ounif(h∞) ,(5.8)

〈Wsχtuh

∣∣ H(h)Wsχtuh〉 = Ounif(h∞) .(5.9)

We start the proof of (5.8) and (5.9) by the easy identities

(5.10) µ(h)‖Wsχtuh‖2 = Re〈χtW
∗
s Wsχtuh |Huh〉 = T1(uh) + T2(uh) ,
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with(2)

T1(uh) := 〈Wsχtuh |HWsχtuh〉 ,(5.11)

T2(uh) :=
1
2
〈
uh

∣∣ (χtW
∗
s WsχtH

− 2χtW
∗
sHWsχt +HχtW

∗
s Wsχt

)
uh

〉
.(5.12)

We will also use the following estimates

‖χtuh‖2 6 1 , 〈χtuh | Hχtuh〉 6 Ch .(5.13)

Only the second estimate in (5.13) deserves comment. It is however an easy
consequence of the standard identity

χtHχt = 1
2 (χ2

tH+Hχ2
t ) + h2|∇χt|2 ,

and of the estimate:

(5.14) µ(h) 6 C̃h ,

resulting from Assumption (5.1).

Induction argument. The proof of (5.8) and (5.9) will be obtained by
proving by induction that p(N) is satisfied for any N ∈ N, where p(N) is
the following statement.

Statement p(N). — For any χt and W as in (5.5), then

‖Wsχtuh‖L2 = Ounif(h3N( 3
8−ε−δ)) ,(5.15)

〈Wsχtuh

∣∣ H(h)Wsχtuh〉 = Ounif(h3N( 3
8−ε−δ)+1) .(5.16)

Initialization N = 0. — The estimate (5.15) is trivially satisfied for
N = 0 and (5.16) is a consequence of (5.11), (5.10), (5.14), (5.7) and
Proposition 5.7 (Proposition 5.7 is somewhat stronger than needed at this
step).

From N to N + 1. — Suppose now that we have proved p(N) for some
N > 0. Given χt and W , choose χ̃t and W̃ satisfying the same assumptions,
but being slightly ‘larger’, i.e.

χ̃tχt = χt , W̃W = W .

We introduce W̃s := χs,0W̃χs,0. Then we consider φh := χ̃tW̃suh in-
stead of uh and assume p(N), with the pair (W̃s, χ̃t). We come back
to (5.10) and observe, using the rough h-pseudodifferential calculus, that

(2) Notice that Tj depends also on a choice of a pair (χt , Ws) and that we will have to
consider different pairs in the induction argument.
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Tj(uh) = Tj(φh) + Ounif(h∞) (j = 1, 2). We notice also that Proposi-
tion 5.6 implies that one can take ϕh = φh in Propositions 5.3 and 5.7.
Therefore, (5.10) and Proposition 5.7 applied with ϕh = φh together with
p(N) leads to (5.16)N+1. Finally, Proposition 5.3 and (5.16)N+1 give (using
(5.1)) (5.15)N+1 and this finishes the induction.

Thus, (5.3) and (5.4) are proved and we have reduced the proof of The-
orem 5.1 to the proof of the three Propositions 5.3, 5.6, and 5.7, which will
be given in the next subsections. �

5.2. Step 2: Lower bound for the local energy T1(ϕh)

Proposition 5.3. — Let Ξ ∈ C∞0 (R), Ξ ≡ 1 on [−1/2, 1/2], Ξ ≡ 0
on R \ [−1, 1]. Suppose that ε ∈ (0, 3/8), that δ satisfies (5.7) and let
C > 0 . Then there exists c0 > 0 (depending also on the constants implicit
in O(h∞) in (5.19) and (5.20) below) and for all N ∈ N there exists CN > 0
such that if ϕh ∈ D(H) satisfies

suppϕh ⊂ {t(x) 6 2h1/2−δ} ,(5.17) ∫
Ω

(
|ϕh|2 + h−1|(−ih∇−A(x))ϕh|2

)
dx 6 C ,(5.18) ∫

Ω

χ2(s/h1/8−δ)
{
|ϕh|2 + h−1|(−ih∇−A(x))ϕh|2

}
dx = O(h∞) ,(5.19)

and ∥∥∥Ξ(
4s
|∂Ω|

)Ξ(
h1/2Ds − ξ0

hε
)Ξ(

4s
|∂Ω|

)ϕh

∥∥∥
L2(Ω)

= O(h∞) .(5.20)

Then,

(5.21) T1(ϕh) := 〈ϕh |Hϕh〉

>
(
Θ0h− C1kmaxh

3/2 + c0h
1+2ε

)
‖ϕh‖2 − CNh

N .

Proof of Proposition 5.3. — The term T1(ϕh) is an integral

(5.22) T1(ϕh) =
∫ (

a−1|(hDs − Ã1)ϕh|2 + a|(hDt)ϕh|2
)
ds dt .

We introduce a localized version of T1(ϕh),

T̃1(ϕh) =
∫
χ2

s

(
a−1|(hDs − Ã1)ϕh|2 + a|(hDt)ϕh|2

)
ds dt .(5.23)
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Using the localization estimates in s (see (5.19)), we obtain:

T1(ϕh) = T̃1(ϕh) +O(h∞) .(5.24)

On the set
{|s| 6 h1/8−δ} ∩ {t 6 2h1/2−δ} ,

we have

(5.25)

a(s, t) = 1− tkmax +O(h3/4−3δ) ,

a−1(s, t) = 1 + tkmax +O(h3/4−3δ) ,

Ã1(s, t) = −t(1− tkmax) +O(h5/4−4δ) .

Therefore, with

(5.26)

a1(t) := 1− tkmax ,

a2(t) := 1 + 2tkmax ,

A(t) := −t(1− tkmax) ,

we get, using (5.24),

T1(ϕh) > (1− h3/4−3δ)Q̃[ϕh] +O(h7/4−5δ)‖ϕh‖2 +O(h∞) ,(5.27)

where

Q̃[f ] :=
∫
χ2

s

(
a2(t)

∣∣(hDs −A(t))f
∣∣2 +

∣∣(hDt)f
∣∣2)a1(t) ds dt .(5.28)

It is clear, using again (5.19), that we can remove the localization χs and
get

(5.29) T1(ϕh) > (1− h3/4−3δ)Q[Ξ(
4s
|∂Ω|

)ϕh]

+O(h7/4−5δ)‖Ξ(
4s
|∂Ω|

)ϕh‖2 +O(h∞) ,

where

Q[f ] :=
∫

R2
+

(
a2(t)

∣∣(hDs −A(t))f
∣∣2 +

∣∣(hDt)f
∣∣2)a1(t) ds dt .(5.30)

Now the coefficients in Q do not depend on s, so we can make a Fourier
decomposition of the quadratic form. Let us define

(5.31)

f̃(s, τ) := h1/4χ1(hδτ)f(s, h1/2τ) ,

` := kmaxh
δτχ1(hδτ/2) ,

gζ(τ) := (2π)−1/2

∫
R
e−iζsf̃(s, τ) ds .
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Notice that the function ` is uniformly bounded on R+. Then

Q[f ] = h

∫
R
qζ [gζ ] dζ ,

qζ [g] :=
∫ ∞

0

{
(1 + 2h1/2−δ`(τ))

[
h1/2ζ/2)

]2 |g(τ)|2
+ τ(1− h1/2−δ`(τ) + |g′(τ)|2

}
(1− h1/2−δ`(τ)) dτ .(5.32)

The form qζ is the quadratic form on

H1
(
R+, (1− h1/2−δ`) dτ

)
∩ L2

(
R+, τ

2(1− h1/2−δ`) dτ
)

defining a selfadjoint unbounded operator h(ζ) on the space

L2
(
R+, (1− h1/2−δ`) dτ

)
:

h(ζ) = − 1
(1− h1/2−δ`)

d

dτ
{(1− h1/2−δ`)} d

dτ

+ (1 + 2h1/2−δ`(τ))×
[
h1/2ζ + τ(1− h1/2−δ`(τ)/2)

]2
.

Similarly, we can introduce the quadratic form on H1(R+)∩L2(R+, τ2dτ):

q0ζ [g] :=
∫ ∞

0

{
(h1/2ζ + τ)2 |g(τ)|2 + |g′(τ)|2

}
dτ .

with associated operator h0(ζ) on L2(R+, dτ) which is the Neumann self-
adjoint realization of:

h0(ζ) := − d2

dτ2
+ (h1/2ζ + τ)2 .

In the two cases, the form domain is the same space and the operator
domain involves the Neumann condition at τ = 0.

Lemma 5.4. — There exists c0 , C , M > 0 , such that if |h1/2ζ − ξ0| >
Mh1/4−3δ/2 , then

inf Spec h(ζ) > Θ0 + c0 min
(
1, |h1/2ζ − ξ0|2

)
,(5.33)

and if |h1/2ζ − ξ0| 6 Mh1/4−3δ/2, then

(5.34) inf Spec h(ζ) >
{

Θ0 + 3C1|ξ0|(h1/2ζ − ξ0)2 − C1kmaxh
1/2
}

− C
(
|h1/2ζ − ξ0|3 + h1/2|h1/2ζ − ξ0|

)
.

Proof of Lemma 5.4. — The proof is similar to a calculation given in
[15, Section 11], so we will be rather brief. Since 0 6 ` 6 C, 0 6 `τ 6 h−δ

and δ ∈ (0, 1/2), we get for all f in the form domain of h(ζ),

qζ [f ] 6 (1 + Ch1/2−δ)q0ζ [f ] + h1/2−3δ‖f‖2 ,(5.35)
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and the same inequality is true by exchanging qζ and q0ζ . Thus, by the
variational characterization of the eigenvalues,∣∣µj(h(ζ))− µj(h0(ζ))

∣∣ 6 Ch1/2−3δ
{
1 + µj(h0(ζ))

}
.(5.36)

Here µj(h) denotes the jth eigenvalue of the self-adjoint operator h (with
h = h(ζ) or h0(ζ)) . Now it follows from (A.4) that, for some c0 > 0 ,

µ1(h0(ζ)) > Θ0 + c0 min
(
1, |h1/2ζ − ξ0|2

)
,

and therefore we get from (5.36), if M is chosen sufficiently big, that

(5.37) µ1(h(ζ)) > Θ0 +
c0
2

min
(
1, |h1/2ζ − ξ0|2

)
for |h1/2ζ − ξ0| > Mh1/4−3δ/2 . Note that from (5.7), 1/4− 3δ/2 > 0.

For |h1/2ζ−ξ0| < Mh1/4−3δ/2 , we will construct an explicit trial function
for h(ζ). With P−1

0 being the regularized resolvent from (A.14) we write

(5.38) fζ(τ) = u0(τ)− 2(h1/2ζ − ξ0)P−1
0 [(t+ ξ0)u0(t)](τ)

+ 4(h1/2ζ − ξ0)2P−1
0

{
(t+ ξ0)P−1

0

[
(t′ + ξ0)u0(t′)

]
(t)− I2u0(t)

}
(τ) .

We note that fζ(τ) belongs to the domain of h(ζ) and a straightforward
calculation gives that∥∥∥{h0(ζ)− [Θ0 + (h1/2ζ − ξ0)2(1− 4I2)]}fζ

∥∥∥ 6 C|h1/2ζ − ξ0|3 ,(5.39)

where I2 is the constant from (3.37), i.e.

I2 :=
∫ ∞

0

(τ + ξ0)u0(τ)P−1
0 [(t+ ξ0)u0(t)](τ) dτ .(5.40)

Define now

f̃ζ := fζ − h1/2kmaxP
−1
0

[{ d
dτ

+ 2τ(ξ0 + τ)2 − τ2(ξ0 + τ)
}
u0

]
.(5.41)

Again a straightforward calculation, using the decomposition

h(ζ)− h0(ζ) := h1/2−δ

(
`′

1− h1/2−δ`

d

dτ

+ 2`(h1/2ζ + τ − h1/2−δ`τ/2)2

−(1− h1/2−δ`)×
{

(h1/2ζ + τ)`τ + τ2h1/2−δ `
2

4

})
,

gives that

(5.42)
∥∥∥{h(ζ)− [Θ0 + (h1/2ζ − ξ0)2(1− 4I2) + h1/2kmaxN ]}f̃ζ

∥∥∥
6 C

(
|h1/2ζ − ξ0|3 + h1/2|h1/2ζ − ξ0|

)
,
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with

N :=
∫ ∞

0

u0(τ)
{ d

dτ
+ 2τ(ξ0 + τ)2 − τ2(ξ0 + τ)

}
u0(τ) dτ .(5.43)

Using Propositions A.2 and A.3, we get

N = −C1 , 1− 4I2 = −3C1ξ0 = 3C1|ξ0| .(5.44)

This, together with (5.36) which permits to have a lower bound of µ2(h(ζ)),
finishes the proof of Lemma 5.4 (see [15, Section 11] for a similar argument).
We have actually obtained the better

(5.45) µ1(h(ζ)) ∼
{

Θ0 + 3C1|ξ0|(h1/2ζ − ξ0)2 − C1kmaxh
1/2
}

− C
(
|h1/2ζ − ξ0|3 + h1/2|h1/2ζ − ξ0|

)
.

�

Lemma 5.4 has the following consequence

Lemma 5.5. — Let ϕh, ε and δ satisfying the assumptions of Proposi-
tion 5.3. Then there exists c0 > 0 such that

Q[Ξ(
4s
|∂Ω|

)ϕh] >
(
Θ0h− C1kmaxh

3/2 + c0h
1+2ε

)
×
∫
|Ξ(

4s
|∂Ω|

)ϕh|2 (1− tkmax) ds dt+Ounif(h∞) .

The proof of Lemma 5.5 is immediate.

End of the proof of Proposition 5.3. — Using (5.17) and (5.19), we get
that ∫

R2
+

|Ξ(
4s
|∂Ω|

)ϕh|2(1− tkmax) ds dt = (1 +O(h3/4−3δ))‖ϕh‖2L2(Ω) .

Therefore, Lemma 5.5 implies that

(5.46) Q[Ξ(
4s
|∂Ω|

)ϕh]

>
(
Θ0h− C1kmaxh

3/2 + c0h
1+2ε − Ch7/4−3δ

)
‖ϕh‖2L2(Ω) .

Combining (5.46) with (5.29), and using the choice of δ from (5.7), yields
(5.21). �
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5.3. Step 3: Preservation of localization

Proposition 5.6. — Let ε ∈ (0, 3/8) and let δ ∈ (0, 1
2 ). Then there

exist α,C > 0 such that if (uh)h∈(0,h0) is the family of functions from
Theorem 5.1 and χt,W are as in (5.5), then φh := χtWsuh satisfies∫

eαt(x)/h1/2
{|φh|2 + h−1|(−ih∇−A(x)φh|2} dx 6 C ,∫

χ2
2(s/h

1/8−δ)
{
|φh|2 + h−1|(−ih∇−A(x))φh|2

}
dx = Ounif(h∞) .

Proof of Proposition 5.6. — We only consider the localization in s, since
the localization in t is much simpler. Let us define

T :=
∫
χ2

2(s/h
1/8−δ)|(−ih∇−A(x))φh|2 dx .

We will only prove that T = Ounif(h∞), the remaining estimate in Propo-
sition 5.6 being easier. We write, with χs := χ2(s/h1/8−δ),

T = R1 +R2 ,(5.47)

R1 :=
∫
χ2

sa
−1|(hDs − Ã1)φh|2 ds dt ,

R2 :=
∫
χ2

sa|(hDt)φh|2 ds dt .

Since a is a bounded function on suppχt and Ws commutes with Dt, we
have, with 〈· | ·〉 being the inner product on L2([−|∂Ω|/2, |∂Ω|/2]×R; ds dt),

|R2| 6 C〈(hDt)(χtuh) |Wsχ
2
sWs(hDt)(χtuh)〉 .(5.48)

Now, with χ̃j defined by

χ̃j(s) = χj(2s/h1/8−δ) ,

Wsχ
2
sWs = (χ̃2

1 + χ̃2
2)Wsχ

2
sWs(χ̃2

1 + χ̃2
2) .(5.49)

Since ε < 3/8 , we see by repeated commutations that

χ̃2
1Wsχ

2
s = Ounif(h∞),

so

(5.50) |R2| 6 C
〈
χ̃2

2(hDt)(χtuh) |Wsχ
2
sWs χ̃

2
2(hDt)(χtuh)

〉
+Ounif(h∞)‖(hDt)(χtuh)‖2 .

Now the Agmon estimates in s and t easily imply that R2 = Ounif(h∞).
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The estimate of R1 is similar but slightly more complicated, since Ws

does not commute with Ã1. We estimate

|R1| 6 R
(1)
1 +R

(2)
1 ,(5.51)

R
(1)
1 := C

∫
χ2

s|(hDs + t)(χtWsuh)|2 ds dt ,

R
(2)
1 := C

∫
χ2

s|Ã1 − t|2|χtWsuh|2 ds dt ,

On suppχt, |Ã1 − t| 6 C, so R(2)
1 can be controlled like R2 by Ounif(h∞).

For R(1)
1 we use that W commutes with (hDs + t) and the Agmon esti-

mates in s, to write

R
(1)
1 = C〈(hDs + t)χtuh |Wsχ

2
sWs(hDs + t)χtuh〉+Ounif(h∞) .(5.52)

Notice that

‖(hDs + t)χtuh‖2 6 C‖(hDs + Ã1)χtuh‖2 + C 6 Const .(5.53)

So we can, like for the control of R2, localize modulo Ounif(h∞) on the
support of χ̃2 and get

|R(1)
1 | 6 C〈χ̃2

2(hDs + t)χtuh |Wsχ
2
sWsχ̃

2
2(hDs + t)χtuh〉+Ounif(h∞)

6 C ′‖χ̃2
2(hDs + t)χtuh‖2 +Ounif(h∞)(5.54)

6 C ′′
(
‖χ̃2

2(hDs − Ã1)χtuh‖2 + ‖χ̃2
2χtuh‖2

)
+Ounif(h∞)

= Ounif(h∞) .

Here we used the tangential Agmon estimates to get the last inequality.
This finishes the proof of Proposition 5.6. �

5.4. Step 4: Control of the commutator T2(ϕh)

5.4.1. Main statement

Proposition 5.7. — Suppose that ε ∈ (0, 3/8) , that δ satisfies (5.7)
and let α , C > 0 . Then there exists c0 > 0 (depending also on the con-
stants implicit in (5.56) below) and for all N ∈ N there exists CN > 0 such
that if ϕh ∈ D(H) is such that∫

eαt(x)/h1/2
{|ϕh|2 + h−1|(−ih∇−A(x))ϕh|2} dx 6 C ,(5.55) ∫

χ2(s/h1/8−δ){|ϕh|2 + h−1|(−ih∇−A(x))ϕh|2} dx = O(h∞) .(5.56)
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Then, with Ws and χt from (5.5) and

(5.57) T2(ϕh) :=
1
2
〈ϕh |

(
χtW

∗
s WsχtH− 2χtW

∗
sHWsχt

+HχtW
∗
s Wsχt

)
ϕh〉 ,

we have

|T2(ϕh)| 6 c0h
9/8−ε−δ

(
〈ϕh |Hϕh〉+ h‖ϕh‖2

)
+ CNh

N .(5.58)

The proof of Proposition 5.7 is based on successive decompositions of the
‘commutator’.

5.4.2. First decomposition for T2(ϕh)

Since χt localizes near the boundary, we can use boundary coordinates
(s, t). Thus, we get, with a = 1− tκ(s),

W ∗
s = a−1Wsa = Ws + Ŵs ; Ŵs := χs,0Ŵχs,0 ,

Ŵ :=
−t
a

[W,κ(s)] .(5.59)

Remember that Ws = χs,0Wχs,0. Let Ξ ∈ C∞0 (R) satisfy

Ξ(s)χs,0(s) = χs,0(s), suppΞ ⊂ (−|∂Ω|
2

,
|∂Ω|

2
).

Clearly, T2(ϕh) = T2(Ξϕh). Now we can calculate the ‘commutator’ in
T2(Ξϕh):

χtW
∗
s WsχtH− 2χtW

∗
sHWsχt +HχtW

∗
s Wsχt

as an (pseudodifferential) operator on L2(R2
+), where we extend the cur-

vature function κ(s) (appearing, for instance, in the expression for H in
boundary coordinates) as a periodic function of s ∈ R.

Using the localization estimates in s from (5.56) combined with the fact
that χt commutes with W and Ŵ , we therefore get

(5.60) T2(ϕh) =
1
2
〈χ2

s,0ϕh | (C1 + C2)χ2
s,0ϕh〉+Ounif(h∞) ,

C1 := [χtW, [χtW,H]] , C2 := C2,1 + C2,2 + C2,3 ,(5.61)

(5.62) C2,1 := Ŵ [χt, [χt,H]]W , C2,2 := Ŵχ2
t [W,H] , C2,3 := [H, Ŵ ]Wχ2

t .

We will calculate and estimate these commutators. We write

(5.63)
H(h) = a−1(hDs − Ã1)a−1(hDs − Ã1) + a−1(hDt)a(hDt)

= H1 +H2 +H3 +H4 ,
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with

(5.64)
H1 := (hDs − Ã1)a−2(hDs − Ã1) , H2 := −ih∂sa

a3
(hDs − Ã1) ,

H3 := (hDt)2 , H4 := −ih∂ta

a
(hDt) .

Remark 5.8. — The commutator C2,3 gives the leading order term. This
can be understood by a ‘back-of-the-envelope’ calculation replacing H by
the leading terms from (3.14), i.e. H ≈ P0+h3/8P1+h1/2P2. We do not give
this formal calculation here, since we do not justify this approximation.

5.4.3. Control of 1
2 〈C1χ

2
s,0ϕh |χ2

s,0ϕh〉

The terms with derivatives in Ds are the most involved.

Commutation with H1. — Since χt commutes with W and H1, we find

[χtW, [χtW,H1]] = χ2
t [W, [W,H1]] .(5.65)

The inner commutator becomes

(5.66) [W,H1] =: Q1 +Q2 ,

with

Q1 := (hDs − Ã1)[W,a−2](hDs − Ã1) ,(5.67)

Q2 := −
{

[W, Ã1]a−2(hDs − Ã1) + (hDs − Ã1)a−2[W, Ã1]
}
.(5.68)

We calculate the double commutators separately

[W,Q1] = (hDs − Ã1)[W, [W,a−2]](hDs − Ã1)

−
{

[W, Ã1][W,a−2](hDs − Ã1) + (hDs − Ã1)[W,a−2][W, Ã1]
}
,

[W,Q2] = −[W, [W, Ã1]]a−2(hDs − Ã1)− (hDs − Ã1)a−2[W, [W, Ã1]]

− [W, Ã1][W,a−2](hDs − Ã1)− (hDs − Ã1)[W,a−2][W, Ã1]

+ 2[W, Ã1]a−2[W, Ã1] .(5.69)

Remember that Ã1(s, t) = −t(1− tκ(s)/2), a(s, t) = 1− tκ(s). Therefore,

[W, Ã1] = t2[W,κ(s)]/2 = t2h1/2−εO1 , [W, [W, Ã1]] = t2h1−2εO2 ,(5.70)

[W,a−2] = th1/2−εO3 , [W, [W,a−2]] = th1−2εO4 ,(5.71)

where, after a right multiplication by a cutoff function localizing in [0, t0),
the Oj ’s are bounded (pseudodifferential) operators commuting with the
multiplication by functions ψ(t).
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Using (5.70), (5.71), the Cauchy-Schwarz inequality and that |t| 6 2h1/2−δ

on suppχt, we find from (5.69),

|〈χ2
s,0ϕh | [χtW, [χtW,H1]]χ2

s,0ϕh〉|

6 C
(
h

3
2−2ε−δ‖(hDs − Ã1)χtχ

2
s,0ϕh‖2

+ h2−2ε−2δ‖(hDs − Ã1)χtχ
2
s,0ϕh‖ ‖χtχ

2
s,0ϕh‖

+ h3−2ε−4δ‖χtχ
2
s,0ϕh‖2

)
6 C̃h3/2−2ε−2δ

(
〈χtϕh | H(h)χtϕh〉+ (h+ h3/2−2δ)‖χtϕh‖2

)
.(5.72)

Using the condition satisfied by δ from (5.7), and the localization estimate
in s (5.56), this implies (5.58) for the expectation value

〈χ2
s,0ϕh | [χtW, [χtW,H1]]χ2

s,0ϕh〉.

Commutation with H2. — The commutation with H2 is similar, but
easier.[

χtW, [χtW,H2]
]

= −ihχ2
t

[
W, [W,

∂sa

a3
](hDs − Ã1)−

∂sa

a3
[W, Ã1)]

]
= −ihχ2

t [W, [W,
∂sa

a3
]](hDs − Ã1)

+ 2ihχ2
t [W,

∂sa

a3
][W, Ã1)] + ihχ2

t

∂sa

a3
[W, [W, Ã1)]] .(5.73)

Now, ∂sa = −tκ′(s), so the new terms to control are

[W,
∂sa

a3
] = h1/2−εtO5, [W, [W,

∂sa

a3
]] = h1−2εtO6 ,(5.74)

with bounded(3) Oj ’s.
Thus, for [χtW, [χtW,H2]], we get

|〈χ2
s,0ϕh | [χtW, [χtW,H2]]χ2

s,0ϕh〉|

6 Ch2−2ε(‖tχtχ
2
s,0ϕh‖ ‖(hDs − Ã1)χtχ

2
s,0ϕh‖

+ ‖t2χtχ
2
s,0ϕh‖ ‖tχtχ

2
s,0ϕh‖)

6 C̃
(
h2−2ε−δ + h

5
2−2ε−3δ

) (
〈χtϕh | H(h)χtϕh〉+ h‖χtϕh‖2

)
.(5.75)

This implies (5.58) for 〈χ2
s,0ϕh | [χtW, [χtW,H2]]χ2

s,0ϕh〉.

(3) after multiplication by a cutoff function localizing in [0, t0),
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Commutation with H3. — Since W commutes with χt and Dt, we can
calculate

[χtW, [χtW,H3]] = h2W 2[χt, [χt, D
2
t ]] = −2h2W 2|∂tχt|2

= −2h1+2δW 2|χ′1(
t

h1/2−δ
)|2 .(5.76)

The expectation value of this term in the state χ2
s,0ϕh will be exponentially

small, due to the normal Agmon estimates, (5.55). Explicitly,

|〈χ2
s,0ϕh | [χtW, [χtW,H3]]χ2

s,0ϕh〉|

= 2h1+2δ
∣∣∣〈eαt/h1/2

χ2
s,0ϕh

∣∣W 2e−2αt/h1/2

× |χ′1(
t

h1/2 − δ
)|2eαt/h1/2

χ2
s,0ϕh〉

∣∣∣
6 2h1+2δ‖W‖2‖e−2αt/h1/2

|χ′1(
t

h1/2−δ
)|2‖∞‖eαt/h1/2

ϕh‖2

6 Ch1+2δe−2αh−δ

= Ounif(h∞) .(5.77)

In particular, (5.58) is satisfied for the term

〈χ2
s,0ϕh | [χtW, [χtW,H3]]χ2

s,0ϕh〉.

Commutation with H4. — When we calculate [χtW, [χtW,H4]], we will
use the discussion of the previous paragraph to conclude that if a derivative
falls on χt, then the resulting expectation value becomes exponentially
small. Thus,

〈χ2
s,0ϕh | [χtW, [χtW,H4]]χ2

s,0ϕh〉

= 〈χ2
s,0ϕh | − ih[W, [W,

∂ta

a
]]χ2

t (hDt)χ2
s,0ϕh〉+Ounif(h∞)

= −ih〈χtχ
2
s,0ϕh | − ih[W, [W,

∂ta

a
]](hDt)χtχ

2
s,0ϕh〉+Ounif(h∞) .(5.78)

From the formula
∂ta

a
=

−κ(s)
1− tκ(s)

,

we see that all derivatives (in s) of ∂ta/a are uniformly bounded on the
support of χt. We therefore find

[W, [W,
∂ta

a
]] = h1−2εO7 ,(5.79)
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where O7 is a bounded (pseudodifferential) operator. Thus

|〈χ2
s,0ϕh | [χtW, [χtW,H4]]χ2

s,0ϕh〉|
(5.80)

6 Ch2−2ε
(
‖(hDt)χtχ

2
s,0ϕh‖‖χtχ

2
s,0ϕh‖

)
+Ounif(h∞)

6 C̃h
3
2−2ε

(
〈χtϕh | H(h)χtϕh〉+ h‖χtϕh‖2

)
+Ounif(h∞) .

This implies (5.58) for 〈χ2
s,0ϕh | [χtW, [χtW,H4]]χ2

s,0ϕh〉, and therefore
(5.58) is established for the expectation of C1.

5.4.4. Control of 1
2 〈C2χ

2
s,0ϕh |χ2

s,0ϕh〉

To estimate this term, we use similar calculations and the decomposition
given in (5.61) and (5.62).

Estimate of 〈C2,1χ
2
s,0ϕh , χ

2
s,0ϕh〉. — For the first term

Ŵ [χt, [χt,H]]W,

we clearly get, using (5.55) and as for (5.77),

〈χ2
s,0ϕh | Ŵ [χt, [χt,H]]Wχ2

s,0ϕh〉

= −h2〈χ2
s,0ϕh | Ŵ |∂tχt|2Wχ2

s,0ϕh〉
= Ounif(h∞) .(5.81)

Thus, (5.58) holds for the expectation of C2,1.

Estimate of 〈C2,2χ
2
s,0ϕh |χ2

s,0ϕh〉. — For this term, we notice that [W,H3] =
0, and calculate, using the Oj ’s introduced previously.

C2,2 = Ŵχ2
t [W,H1 +H2 +H4]

= Ŵχ2
t

(
(hDs − Ã1)[W,a−2](hDs − Ã1)− [W, Ã1]a−2(hDs − Ã1)

− (hDs − Ã1)a−2[W, Ã1]− ih[W,
∂sa

a3
](hDs − Ã1)

+ ih
∂sa

a3
[W, Ã1]− ih[W,

∂ta

a
](hDt)

)
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= Ŵχ2
t

(
(hDs − Ã1)th1/2−εO3(hDs − Ã1)

− t2h1/2−εO1a
−2(hDs − Ã1)

− (hDs − Ã1)a−2t2h1/2−εO1 − ith3/2−εO5(hDs − Ã1)

− ih3/2−εt
κ′(s)
a3

t2O1 − ih3/2−εO8(hDt)
)
.(5.82)

Here O8 (which we used in the last line) and O9 (that will be used below),
are

[W,
−κ(s)
a

] = h1/2−εO8 , Ŵ = th1/2−εO9 .(5.83)

Therefore, we get (using the pseudo-differential calculus for showing that
[Ds,O9] = O10)

|〈χ2
s,0ϕh | C2,2χ

2
s,0ϕh〉|

6 C
(
h1−2εh1−2δ‖(hDs − Ã1)O9χ

2
s,0ϕh‖ ‖(hDs − Ã1)χ2

s,0ϕh‖

+ h1−2εh3/2−3δ‖χ2
s,0ϕh‖ ‖(hDs − Ã1)χ2

s,0ϕh‖

+ h1−2εh3/2−3δ‖(hDs − Ã1)O9χ
2
s,0ϕh‖ ‖χ2

s,0ϕh‖

+ h2−2εh1−2δ‖χ2
s,0ϕh‖ ‖(hDs − Ã1)χ2

s,0ϕh‖

+ h2−2εh2−4δ‖χ2
s,0ϕh‖2

+ h2−2εh1/2−δ‖χ2
s,0ϕh‖ ‖hDtχ

2
s,0ϕh‖

)
6 C̃h3/2−2ε

(
〈ϕh |Hϕh〉+ h‖ϕh‖2

)
.(5.84)

So, by (5.7), (5.58) also holds for the expectation of C2,2.

Estimate of 〈C2,3χ
2
s,0ϕh |χ2

s,0ϕh〉. — For this last term the approach is
equally direct. We calculate:

[Ŵ ,H] = [Ŵ , (hDs − Ã1)]a−2(hDs − Ã1)

+ (hDs − Ã1)[Ŵ , a−2](hDs − Ã1)

+ (hDs − Ã1)a−2[Ŵ , (hDs − Ã1)]

− ih[Ŵ ,
∂sa

a3
](hDs − Ã1)− ih

∂sa

a3
[Ŵ , (hDs − Ã1)]

− [
t

a
, (hDt)2][W,κ(s)]

+ ih
t

a

[
[W,κ(s)],

∂ta

a

]
(hDt) + ih

∂ta

a

[ t
a
, (hDt)

]
[W,κ(s)] .(5.85)
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The commutators in the above expression can be estimated:

[Ŵ , (hDs − Ã1)] = −t
[
a−1[W,κ(s)], hDs

]
+ t
[
a−1[W,κ(s)], Ã1

]
= −iht∂sa

a2
[W,κ(s)] + hta−1[[W,κ(s)], Ds]

− t3a−1[[W,κ(s)], κ(s)]/2

= −iht2κ
′(s)
a2

[W,κ(s)] + hta−1[W, [κ(s), Ds]]

− t3a−1[[W,κ(s)], κ(s)]/2

= t2h3/2−εU(1) + th3/2−εU(2) + t3h1−2εU(3) ,(5.86)

with bounded U(j)’s when composed with t-cut-off functions. Thus, when
we localize in {|t| 6 Ch1/2−δ}, we get

[Ŵ , (hDs − Ã1)] = h2−δ−εU1 ,(5.87)

where U1 is uniformly bounded. Similarly,

[Ŵ , a−2] = [Ŵ ,
1− a2

a2
](5.88)

= t2a−1
[
[W,κ(s)],

2κ(s)− tκ(s)
a2

]
= h1−2δh1−2εU2 ,[

Ŵ ,
∂sa

a3

]
= t2a−1

[
[W,κ(s)],

κ′(s)
a3

]
= h1−2δh1−2εU3 ,(5.89) [ t

a
, (hDt)

]
= ih∂t(

t

a
) .(5.90) [ t

a
, (hDt)2

]
= ih(hDt)∂t(

t

a
) + ih∂t(

t

a
)(hDt)(5.91)

= 2ih(hDt)∂t(
t

a
)− h2∂2

t (
t

a
)

= (hDt)hU4 + h2U5 ,[
[W,κ(s)],

∂ta

a

]
= h1−2εU6 ,(5.92)
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Thus, we can estimate, after additional controls of commutators,

|〈χ2
s,0ϕh | C2,3χ

2
s,0ϕh〉|

6 C
(
h2−δ−ε‖χ2

s,0ϕh‖ ‖(hDs − Ã1)Wχ2
tχ

2
s,0ϕh‖

+ h1−2δh1−2ε‖(hDs − Ã1)χ2
s,0ϕh‖ ‖(hDs − Ã1)Wχ2

tχ
2
s,0ϕh‖

+ h2−δ−ε‖(hDs − Ã1)χ2
s,0ϕh‖ ‖χ2

s,0ϕh‖

+ h2−2δh1−2ε‖χ2
s,0ϕh‖ ‖(hDs − Ã1)Wχ2

tχ
2
s,0ϕh‖

+ h3−δ−ε‖χ2
s,0ϕh‖2 + h|〈χ2

s,0ϕh | (hDt)U4[W,κ(s)]χ2
s,0ϕh〉|

+ h3/2−δh1−2ε‖χ2
s,0ϕh‖ ‖(hDt)Wχ2

tχ
2
s,0ϕh‖

+ h5/2−ε‖χ2
s,0ϕh‖2

)
6 C̃

(
h3/2−δ−ε〈ϕh |Hϕh〉+ h5/2−δ−ε‖ϕh‖2

+ h|〈χ2
s,0ϕh | (hDt)U4[W,κ(s)]χ2

s,0ϕh〉|
)
.(5.93)

Remark 5.9. — If, in (5.93), we estimate [W,κ(s)] by the easy pseudo-
differential result, i.e. use the bound∥∥[W,κ(s)]∥∥ = O(h1/2−ε) ,

we can continue (5.93) to get

|〈χ2
s,0ϕh | C2,3χ

2
s,0ϕh〉| 6 C

(
h1−ε〈ϕh |Hϕh〉+ h2−ε‖ϕh‖2

)
.

This would only allow us to take ε ∈ (0, 1/3) instead of ε ∈ (0, 3/8) as
claimed in Theorem 5.1. In order to get the optimal range for ε, we estimate
the commutator [W,κ(s)] slightly better using the ‘Agmon estimates’ in s,
i.e. (5.56).

We write κ(s) = kmax − s2κ̂(s), with κ̂ a smooth function with bounded
derivatives of all orders. Now,

[W,κ(s)] = [κ̂(s)s2,W ] = κ̂(s)[s, [s,W ]] + 2κ̂(s)[s,W ]s+ [κ̂(s),W ]s2

= Ũ1h
1−2ε + Ũ2h

1/2−εs+ Ũ3h
1/2−εs2 .(5.94)

Therefore, using the estimate (5.56), we get the inequality,∥∥[W,κ(s)]χ2
s,0ϕh

∥∥ 6 Ch5/8−ε−δ‖ϕh‖+Ounif(h∞) ,(5.95)

and finally, (5.58) follows (for the final term C2,3) by inserting (5.95) in
(5.93).

This ends the proof of Proposition 5.7.
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6. Lower bounds in Grushin’s approach

In this section we finish the proof of Theorem 1.1.

Theorem 6.1. — Let µ(n)(h) be the n-th eigenvalue of H(h) and let
z
(n)
∞ (h) be the asymptotic sum given in (3.4). Then µ(n)(h) has z(n)

∞ (h) as
asymptotic expansion.

It is clear that Theorem 6.1 implies Theorem 1.1. From the estimates in
the previous sections 4 and 5, we know the low-lying eigenfunctions to be
localized in phase space, around the following set (where we denote by ξ

the variable in phase space dual to s):

• s ∈ (−2h1/8−ε1 , 2h1/8−ε1) ;
• t ∈ (−2h1/2−ε2 , 2h1/2−ε2) ;
• ξ ∈ (−2hε3−1/2 + ξ0h

−1/2 , 2hε3−1/2 + ξ0h
−1/2) .

We will choose ε1 = ε2 =: η , ε3 = 3/8 − η , where η < 1/8 . Thus, in the
remainder of the section, η will be a fixed (small) constant satisfying,

η ∈ (0, 1/8) .(6.1)

Remark 6.2. — We only need a space localization in t. There is no
localization in the corresponding frequency. This is pleasant, since it avoids
possible complications due to the boundary condition.

More precisely, the localization of u(n)
h is analyzed in the following lemma.

Lemma 6.3. — Let M > 0, h0 > 0 and let χ be a standard cut-off
function:

χ ∈ C∞0 (R) , suppχ ⊂ (−2, 2) ,(6.2)

χ(x) = 1 on a nbd. of [−3
2
,+

3
2
] .

Then for all K > 0 there exists bK > 0 such that if (uh)h∈(0,h0) is a family
of normalized eigenfunctions of H with eigenvalue µ(h) satisfying

µ(h) 6 Θ0h− C1kmaxh
3/2 +Mh7/4 ,(6.3)

then, with η from (6.1),

(6.4)
∥∥∥uh − χ(

t

h1/2−η
)χ(

s

h1/8−η
)χ
( |h1/2Ds − ξ0|

h3/8−η

)
χ(

4s
|∂Ω|

)uh

∥∥∥
2

6 bKh
K .
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Proof of Lemma 6.3. — Define χ2 = 1− χ. From Theorems 4.1 and 4.9
we know that

(1− χ(
t

h1/2−η
)χ(

s

h1/8−η
))uh = Ounif(h∞) .

So it suffices to prove that

(6.5)
∥∥∥χ(

t

h1/2−η
)χ(

s

h1/8−η
)uh − χ(

t

h1/2−η
)χ(

s

h1/8−η
)

× χ
( |h1/2Ds − ξ0|

h3/8−η

)
χ(

4s
|∂Ω|

)uh

∥∥∥
2

= Ounif(h∞) .

By writing

χ(
t

h1/2−η
)χ(

s

h1/8−η
)uh = χ(

t

h1/2−η
)χ(

s

h1/8−η
)χ(

4s
|∂Ω|

)uh

= χ(
t

h1/2−η
)χ(

s

h1/8−η
)
{
χ(
|h1/2Ds − ξ0|

h3/8−η
)

+ χ2(
|h1/2Ds − ξ0|

h3/8−η
)
}
χ(

4s
|∂Ω|

)uh ,

and appealing to Theorem 5.1 we get (6.5) and thereby Lemma 6.3. �

Proof of Theorem 6.1. — For a definite choice of χ (fixed once and for
all) as in Lemma 6.3, and uh an eigenfunction of H satisfying (6.3), define

ψ̃h = e−isξ0/h1/2
χ(

t

h1/2−η
)χ(

s

h1/8−η
)(6.6)

× χ
( |h1/2Ds − ξ0|

h3/8−η

)
χ(

4s
|∂Ω|

)uh ,

and

ψh(σ, τ) = h5/16ψ̃h(h1/8σ, h1/2τ) .

Calculations will from now on be carried out in the variables
(σ, τ). All functions considered will be localized on a scale of order h−η

in the (σ, τ)-variables. This implies (in particular) that they are localized
to a tubular neighborhood of size h1/2−η near the boundary in the origi-
nal coordinates x ∈ Ω. The natural measure in (σ, τ)-variables, inherited
from L2(Ω, dx) by implementing unitarily the change of coordinates, is
(1− h1/2τκ(h−1/8σ))dσdτ . However, due to the localization of our func-
tions (and the boundedness of κ) we can replace this measure by dσdτ (since
h1/2τκ(h−1/8σ) = O(h1/2−η) on |τ | 6 Ch−η), without changing our esti-
mates up to multiplicative h-independent constants. Therefore we can (and
will !) do all our estimates by choosing the norms in L2(R×R+, dσdτ) or in
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L(L2(R×R+, dσdτ)). Thus all L2-norms below refer to L2(R×R+, dσdτ)
and similarly for operator norms.

With these conventions we have, using Theorems 4.1, 4.9 and 5.1, for all
eigenfunctions uh corresponding to eigenvalues µ(h) satisfying (6.3), that
the corresponding ψh (given in (6.6)) satisfies (with error terms
Ounif(h∞) uniform for eigenfunctions uh as long as (6.3) is satisfied),

‖ψh‖L2 = 1 +Ounif(h∞) , and Lψh = ψh +Ounif(h∞) ,(6.7)

for all

L = χ̃(
τ

h−η
)χ̃(

σ

h−η
)χ̃(hηDσ) ,(6.8)

with χ̃ satisfying (6.2) and with η from (6.1). Let us fix an L0 as in (6.8)
in the rest of this Section.

Let Hharm be the harmonic oscillator on L2(R) defined by

Hharm := 3C1

√
Θ0D

2
σ + C1

k2σ2

2 ,(6.9)

(compare with Section 3). Clearly, Hharm has eigenvalues

e` := C1Θ
1/4
0

√
3k2
2 (2`− 1) ,(6.10)

with ` ∈ N\{0}. Let v` be the corresponding (unique up to scalar multiple)
normalized eigenfunction. For N ∈ N \ {0}, the value C1Θ

1/4
0

√
6k2N is

right in the middle between two eigenvalues (eN and eN+1). We define the
vector space VN ⊂ L2(R) as the space spanned by eigenfunctions of Hharm

corresponding to eigenvalues below C1Θ
1/4
0

√
6k2N , i.e.

VN := Ran 1
[0,C1Θ

1/4
0

√
6k2N ]

(Hharm) = Span{v1, . . . , vN} .(6.11)

Clearly, dimVN = N .
Similarly, we define UN (h) ⊂ L2(Ω) as the spectral subspace attached to

the interval IN (h), with

IN (h) =
(
−∞,Θ0h− kmaxC1h

3/2 + C1Θ
1/4
0

√
6k2Nh

7/4
]
.(6.12)

Let ΠVN
: L2(R) → VN and ΠUN

: L2(Ω) → UN (h) be the orthogonal
projections. We define a linear map M(N)

1 (h) from VN to UN (h) by

M(N)
1 (h)v` = ΠUN

φ
(`)
M0

,

(where φ(n)
M was defined in (3.2)) and extended by linearity. The number M0

is chosen fixed, but suffficiently large—the choice M0 = 10 would suffice.
Furthermore, we define a linear map M(N)

2 (h) from UN (h) to VN by

M(N)
2 (h)uh = ΠVN

R−0 L0ψh ,
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where ψh is defined from uh by (6.6). We will prove the following lemma.

Lemma 6.4. — Let N ∈ N\{0}. Then there exists h0 > 0, and η > 0 (as
in (6.1) and used in (6.6)) such that for all h < h0, M(N)

1 (h) and M(N)
2 (h)

are bĳective.

We will prove Lemma 6.4 below. First we apply it to finish the proof of
Theorem 6.1.

Lemma 6.4 implies that, for sufficiently small h,

dimUN (h) = dimVN = N .

But Corollary 3.3 describes N distinct points of Spec(H) below

Θ0h− kmaxC1h
3/2 + C1Θ

1/4
0

√
3k2
2 2Nh7/4 .

This finishes the proof of Theorem 6.1. �

Proof of Lemma 6.4. — We only need to prove that M(N)
1 (h) and

M(N)
2 (h) are both injective. Injectivity of M(N)

1 (h) is clear from Section 3,
so we only consider injectivity of M(N)

2 (h).
The key to the proof of injectivity of M(N)

2 (h) is the following lemma.

Lemma 6.5. — There exists η0 > 0 such that if η < η0 in (6.1), then
there exists C > 0 such that for all normalized eigenfunctions uh ∈ UN (h)
with corresponding eigenvalue µ(h), we have∥∥(ν(h)−Hharm

)
R−0 L0ψh

∥∥ 6 Ch1/16 ,(6.13)

where ψh is related to uh by (6.6) and ν(h) is defined by

ν(h) := h−7/4
{
µ(h)− (Θ0h− kmaxC1h

3/2)
}
.(6.14)

Proof of Lemma 6.5. — With P from (3.10) and

λ(h) = h−1(µ(h)−Θ0h) ,(6.15)

we have (using Theorems 4.1, 4.9, and 5.1), uniformly for normalized eigen-
functions uh ∈ UN (h),

(6.16) (P − λ(h))ψh = Ounif(h∞) , and (P − λ(h))Lψh = Ounif(h∞) .

In the rest of the proof of Lemma 6.5 we will often have estimates like
(6.16). We will generally not repeat the phrase ‘uniformly for normalized
eigenfunctions uh ∈ UN (h)’, but the estimates are meant to have such
uniformity.

Using (6.16) and the notation from (3.24), we get:

(6.17)
(
P − λ(h) R+

0

R−0 0

)(
L0ψh

0

)
=
(

0
R−0 L0ψh

)
+Ounif(h∞) .

ANNALES DE L’INSTITUT FOURIER



MAGNETIC NEUMANN LAPLACIAN 55

Furthermore, with E0 from (3.24),

(6.18) E0

(
P − λ(h) R+

0

R−0 0

)(
L0ψh

0

)
=
{
L0 +

(
E0(∂P )L0 0
R−0 (∂P )L0 0

)}(
ψh

0

)
.

Here we have introduced

∂P = (P − P0)− λ(h) .(6.19)

In order to proceed we need a bound on the matrix in {·} in (6.18).

Lemma 6.6. — There exists a constant C > 0 such that (with η from (6.1))

‖E0(P − P0)L0‖+ ‖R−0 (P − P0)L0‖ 6 Ch3/8−η .(6.20)

More precisely, with P1, P2 and P3 from (3.16)-(3.18), there exists N0 ∈ N
such that, for η satisfying (6.1),
(6.21)

‖E0(P − P0)L0 − E0

(
h3/8P1 + h1/2P2 + h3/4P3

)
L0‖ 6 Ch7/8−N0η ,

‖R−0 (P − P0)L0 −R−0
(
h3/8P1 + h1/2P2 + h3/4P3

)
L0‖ 6 Ch7/8−N0η .

Furthermore,

h3/8‖E0P1L0‖+ h3/8‖R−0 P1L0‖ 6 Ch
3
8−2η ,

h1/2‖E0P2L0‖+ h1/2‖R−0 P2L0‖ 6 Ch1/2−3η ,

h3/4‖E0P3L0‖+ h3/4‖R−0 P3L0‖ 6 Ch3/4−5η .(6.22)

Proof of Lemma 6.6. — With ã and ã2 from (3.9) and omitting the
tilda’s on the a’s, we have by definition

P = a−1
[
(τ + ξ0) + h3/8Dσ − τ(1− a2)

]
× a−1

[
(τ + ξ0) + h3/8Dσ − τ(1− a2)

]
+ a−1DτaDτ −Θ0 ,(6.23)

and therefore

P − P0 =
{
a−1

[
(τ + ξ0) + h3/8Dσ − τ(1− a2)

]
× a−1

[
(τ + ξ0) + h3/8Dσ − τ(1− a2)

]
− (τ + ξ0)2

}
− iDτ

∂τa

a
+ ∂τ

(∂τa

a

)
.(6.24)
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We will use the property that L localizes to {τ < 2h−η, |σ| < 2h−η} and
that E0 , E0Dτ , R

−
0 , and R−0 Dτ are bounded. We introduce

f := (τ + ξ0)− τ(1− a2)

and calculate

a−1
(
f + h3/8Dσ

)
a−1

(
f + h3/8Dσ

)
− (τ + ξ0)2

=
(
f2/a2 − (τ + ξ0)2

)
+ ih3/8 ∂σa

a3
f + 2a−2fh3/8Dσ

+ i
∂σa

a3
h3/4Dσ + a−2h3/4D2

σ .

Thus,

P − P0 = Q1 +Q2 +Q3 ,

where

Q1 = f2/a2 − (τ + ξ0)2 + ih3/8 ∂σa

a3
f + ∂τ

(∂τa

a

)
,

Q2 = −iDτ
∂τa

a
,

Q3 = 2a−2f(h3/8Dσ) + i
∂σa

a3
(h3/4Dσ) + a−2(h3/4D2

σ) .

Now, on {τ < 2h−η, |σ| < 2h−η}, we have

a = 1 +O(h1/2−η) , 1− a2 = O(h1/2−η) .(6.25)

Therefore,

f2/a2 = (τ + ξ0)2 +O(h1/2−2η) , ∂σa = O(h1/2+1/8−η) ,

f = O(h−η) , ∂τa = O(h1/2) ,

∂τ

(∂τa

a

)
= O(h) .

Thus, Q1 = O(h1/2−2η), so

‖E0Q1L0‖+ ‖R−0 Q1L0‖ = O(h
1
2−2η) .

Furthermore, for all j > 0,

Dj
σχ̃(hησ)χ̃(hηDσ) = χ̃(2hησ)Dj

σχ̃(hησ)χ̃(hηDσ) ,(6.26)

and

‖Dj
σχ̃(hησ)χ̃(hηDσ)‖ 6 cj(h−η)j .(6.27)
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Using (6.26) and (6.27), we get

‖E0Q2L0‖+ ‖R−0 Q2L0‖ = O(h1/2) ,

‖E0Q3L0‖+ ‖R−0 Q3L0‖ = O(h−ηh3/8)

+O(h1/2+1/8−ηh−η) +O(h3/4−2η) .

This finishes the proof of (6.20).
The more precise estimates, (6.21) and (6.22), follow in the same manner,

using that on {τ < 2h−η, |σ| < 2h−η},

a = 1− h1/2τ
(
κ(0)− 1

2h
1/4σ2κ′′(0) +O(h3(1/8−η))

)
,

a2 = 1− h1/2τ 1
2

(
κ(0)− 1

2h
1/4σ2κ′′(0) +O(h3(1/8−η))

)
,

instead of (6.25). We omit the details.
This finishes the proof of Lemma 6.6. �

Combining (6.17) and (6.18), we get:

(6.28) L0ψh = R+
0 R

−
0 L0ψh − E0(∂P )L0ψh +Ounif(h∞) ,

and

(6.29) R−0 (∂P )L0ψh = Ounif(h∞) .

We now introduce an additional localization through an operator L as in
(6.8), which is chosen (slightly ‘bigger’ than L0, i.e.) such that

LL0 = L0 +O(h∞) .(6.30)

We observe that (6.29) is also valid with L0 replaced by LL0 and, applying
the (uniformly) bounded operator R−0 (∂P )L to (6.28), we obtain

(6.31) R−0 (∂P )LR+
0 R

−
0 L0ψh −R−0 (∂P )LE0(∂P )L0ψh = Ounif(h∞) .

We again apply Lemma 6.6, (6.31) and the comparison estimates (6.34)
and (6.33) (to be proved below) and obtain that, for all δ > 0, there exists
η0 ∈ (0, 1

8 ), such that if η < η0, then

−R−0
(
h3/8P1 + h1/2P2 + h3/4P3 − λ(h)

)
LR+

0 R
−
0 L0ψh

+R−0
(
h3/8P1

)
LE0

(
h3/8P1

)
R+

0 R
−
0 L0ψh

= Ounif(h∞) +Ounif(h7/8−δ)‖R+
0 R

−
0 L0ψh‖ .

Using (6.29), the rapid decay of the function u0, the support proper-
ties (in τ) of L and the pseudo-differential calculus in the σ variable for
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controlling commutators (in order to push L to the right), we finally get:

(6.32) −R−0
(
h3/8P1 + h1/2P2 + h3/4P3 − λ(h)

)
R+

0 R
−
0 L0ψh

+R−0
(
h3/8P1

)
E0

(
h3/8P1

)
R+

0 R
−
0 L0ψh

= Ounif(h∞) +Ounif(h7/8−δ)‖R+
0 R

−
0 L0ψh‖ .

We get (6.13) from (6.32) by calculations similar to those leading to the
expressions for E1, E2, E3 in Subsection 3.4. We just recall that

R−0 P1R
+
0 = 0 , −R−0 P2R

+
0 = κ(0)C1 ,

and
−R−0 P3R

+
0 +R−0 P1E0P1R

+
0 = −Hharm .

This finishes the proof of Lemma 6.5 �

We now compare (as already used above) various norms and observe:

Lemma 6.7. — Let N ∈ N \ {0}. There exists c > 0 and h0 > 0 such
that if ψh is associated (as in (6.6)) to a normalized eigenfunction uh of H
with uh ∈ UN (h), then for all h ∈ (0, h0],

‖R−0 L0ψh‖ − ch1/4 6 ‖ψh‖ 6 ‖R−0 L0ψh‖+ ch1/4 .(6.33)

Proof. — Since clearly ‖R−0 ‖ = 1, we get from (6.7),

‖R−0 L0ψh‖ 6 ‖L0ψh‖ = ‖ψh‖+Ounif(h∞) .

This implies the first inequality in Lemma 6.7. To get the second inequality,
we apply (6.28), Lemma 6.6 and (6.7), and get

(6.34) ψh = R+
0 R

−
0 L0ψh +Ounif(h3/8−η) .

Since ‖R+
0 ‖ = 1 and ψh satisfies (6.7), this implies the lemma. �

Using the self-adjointness of the harmonic oscillators, we get the following
proposition.

Proposition 6.8. — Let N ∈ N \ {0}. There exist h0 > 0 and C > 0
such that if (µ(h))h∈(0,h0] is an eigenvalue ofH satisfying with µ(h) ∈ IN (h)
(see (6.12)), then ν(h) (defined by (6.14)) satisfies

ν(h) ∈ ∪N
`=1{e`}+ [−Ch1/16,+Ch1/16] .(6.35)

Proof. — Using Lemma 6.7 above, Lemma 6.5 implies that

dist
(
ν(h),Spec{Hharm}

)
= Ounif(h1/16) .

�
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Lemma 6.9. — Let N ∈ N \ {0}. There exists h0 > 0 such that if
h ∈ (0, h0], then dimUN (h) = N .

Proof. — We know from Section 3 that dimUN (h) > N . In order to
prove Lemma 6.9 we only have to prove that the eigenspace attached to
some interval ν(h) ∈ [e` − Ch1/16, e` + Ch1/16], with e` from (6.10), and
` 6 N , is necessarily of dimension 6 1. If it was not the case, let u1,h,
u2,h be normalized orthogonal eigenfunctions corresponding to eigenvalues
µ1(h) and µ2(h) in the interval

Θ0h− C1kmaxh
3/2 + h7/4[e` − Ch1/16, e` + Ch1/16] ,

for some ` = `(h). Let ψ1,h, ψ2,h be defined as in (6.6) and let ν1, ν2 be as
in (6.14). Let e` and v` be as in (6.10) and below.

For a, b ∈ C (a, b will depend on h) with |a|2 + |b|2 = 1. We have, using
the almost orthonormality of ψ1,h, ψ2,h and (6.7),

(6.36) 1 +Ounif(h∞) = ‖aψ1,h + bψ2,h‖2

6 ‖R−0 L0(aψ1,h + bψ2,h)‖2 +Ounif(h1/8−η) .

With ` = `(h) as above, we may choose a, b such that∫ ∞

−∞
v`(σ)R−0 L0(aψ1,h + bψ2,h) dσ = 0 .(6.37)

Lemma 6.5 implies that

(e` −Hharm)R−0 L0(aψ1,h + bψ2,h) = a(ν1(h)−Hharm)R−0 L0ψ1,h

+ b(ν2(h)−Hharm)R−0 L0ψ2,h

+Ounif(h1/16)

= Ounif(h1/16) .(6.38)

Using (6.37), (6.38) implies that

‖R−0 L0(aψ1,h + bψ2,h)‖ = Ounif(h1/16) ,(6.39)

which is in contradiction to (6.36). This finishes the proof of Lemma 6.9. �

Thus, for sufficiently small h, UN (h) = Span{u(j)
h }N

j=1.

Lemma 6.10. — Let N ∈ N \ {0}. There exists h0 > 0 such that

M(N)
2 u

(j)
h = vj +Ounif(h1/16) ,

for all h < h0 and all j ∈ {1, . . . , N}.
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Proof. — By induction it suffices to prove the lemma for j = N . By
Lemma 6.5 and the spectral theorem there exists `(h) ∈ {1, . . . , N} such
that (with ψN being associated to u(N)

h as in (6.6))

R−0 L0ψN − 〈v`(h), R
−
0 L0ψN 〉v`(h) = Ounif(h1/16) .

Suppose `(hn) < N for a sequence {hn} with hn ↘ 0.
Then u

(N)
hn

∈ UN−1(hn) and therefore dimUN−1(hn) > N , in contradic-
tion to Lemma 6.9. Thus,

R−0 L0ψN − 〈vN , R
−
0 L0ψN 〉vN = Ounif(h1/16) ,

and therefore

M(N)
2 u

(N)
h = 〈vN , R

−
0 L0ψN 〉vN +Ounif(h1/16) .

Lemma 6.10 now follows from Lemma 6.7. �

The injectivity of M(N)
2 clearly follows from Lemma 6.10. This finishes

the proof of Lemma 6.4. �

Appendix A. On an important family
of ordinary differential equations

Let us recall for the comfort of the reader the main properties (mainly
due to [9] and [3]) concerning the Neumann realization of HN,ξ in L2(R+)
associated to D2

x + (x+ ξ)2. We denote by µ̂(1)(ξ) the lowest eigenvalue of
HN,ξ and by ϕξ the corresponding strictly positive normalized eigenfunc-
tion. More simply we will write µ(ξ) instead of µ̂(1)(ξ) in this appendix. It
has been proved that the infimum infξ∈R inf Spec(HN,ξ) is actually a min-
imum. Then one can show that there exists ξ0 < 0 such that µ(ξ) decays
monotonically to a minimum value Θ0 < 1 and then increases monotoni-
cally again. So it can be proved that:

(A.1) Θ0 = inf
ξ

(
inf Spec(HN,ξ)

)
= inf Spec(HN,ξ0) ,

and moreover that:

(A.2) Θ0 = ξ20 .

It is indeed proved in [9] that

(A.3) µ′(ξ) = [µ(ξ)− ξ2]ϕξ(0)2 .

From (A.3), we get that

(A.4) µ′′(ξ0) = −2ξ0ϕ2
ξ0

(0) > 0 .
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We will write u0 instead of φξ0 , and define the constant C1 by (1.3).
Let us now recall some formulas appearing in [3]. Define Mk to be the

k’th moment, centered at −ξ0, of the measure u2
0(x) dx:

(A.5) Mk =
∫

R+

(x+ ξ0)ku2
0(x) dx .

These moments were calculated in [3].

Lemma A.1. — The first moments can be expressed by the following
formulas:

M0 = 1 , M1 = 0 , M2 =
Θ0

2
, M3 =

u2
0(0)
6

> 0 .(A.6)

We will also need a few other results on the model operator.

Proposition A.2. — We have the following identities∫ ∞

0

[2τ(τ + ξ0)2 − τ2(τ + ξ0)]u2
0(τ) dτ =

u2
0(0)
6

=
C1

2
> 0 ,

i

∫ ∞

0

u0(τ)Dτu0(τ) dτ = −u
2
0(0)
2

= −3
2
C1 .

Proof. — The first identity clearly follows from the known moments of
u2

0 and (1.3). The second identity follows from partial integration. �

Proposition A.3. — For z ∈ R, let E(z) be defined as the ground
state energy of the Neumann realization of

H(z) = − d2

dτ2
+ (τ + ξ0 + z)2 ,

on L2(R+). Then E(z) is a smooth function and satisfies

E′′(0) = 2(1− 4I2) ,(A.7)

with I2 from (3.37).
Furthermore,

E′′(0) = 6C1

√
Θ0 .(A.8)

Proof. — By analytic perturbation theory, E(z) is analytic and there
exists an analytic function R 3 z 7→ φ(z) ∈ L2(R+) such that

‖φ(z)‖ = 1 , H(z)φ(z) = E(z)φ(z) , φ(0) = u0 .(A.9)

By differentiating the identity ‖φ(z)‖2 = 1 twice with respect to z, we find

2 Re〈φ′(0) | u0〉 = 0 , −‖φ′(0)‖2 = Re〈φ′′(0) | u0〉 .(A.10)
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From the equation H(z)φ(z) = E(z)φ(z), and the fact that E(z) is minimal
at z = 0, we get, with P0 = H(0)−Θ0 ,

P0φ
′(0) = −2(τ + ξ0)u0 ,

which implies with P−1
0 from (A.13) and (A.14), since u0 ⊥ (τ + ξ0)u0

(by (A.6)),

φ′(0) = −2P−1
0

(
(τ + ξ0)u0

)
+ cu0 ,(A.11)

for some c ∈ iR. Finally, differentiating the relation

E(z) = 〈φ(z) | H(z)φ(z)〉

twice gives us the formula:

(A.12) E′′(0) = 2Θ0 Re〈φ′′(0) | u0〉+ 8 Re〈φ′(0) | (τ + ξ0)u0〉
+ 2〈φ′(0) | H(0)φ′(0)〉+ 2 .

Upon inserting (A.10) and (A.11) in (A.12), we get (A.7). The final identity,
(A.8) is a rephrasing of (A.4) . �

We also have the following easy observation:

Lemma A.4. — Let R+
0 be the operator from (3.21). Suppose φ ∈ S(R),

then R+
0 φ ∈ S(R× R+) .

Proof. — This is an easy consequence of the regularity and decay of u0 .
�

Finally, we will need the following mapping properties of the regularized
resolvent.

Lemma A.5. — Let P0 be the Neumann realization of

− d2

dτ2
+ (τ + ξ0)2 −Θ0 ,

on L2(R+). For φ ⊥ u0 we can define P−1
0 φ as the unique solution f to

P0f = φ , f ⊥ u0 .(A.13)

Let P−1
0 ∈ L(L2(R+)) be the regularized resolvent:

P−1
0 φ =

{
0 , φ ‖ u0

P−1
0 φ, φ ⊥ u0 ,

(A.14)

(and extended by linearity). Then P−1
0 is continuous from S(R+) into

S(R+) . Moreover, for any α > 0, P−1
0 is continuous in L2(R+ ; exp−ατ) .
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Proof. — Using the local regularity up to the boundary of P0, one first
gets that P−1

0 sends S(R+) into C∞(R+). For the control at ∞, one then
observes, after cutting away from 0, that the problem is reduced to the
analysis of inverting the harmonic oscillator − d2

dτ2 + (τ)2 − Θ0 on S(R),
which is a standard result.

For the last statement, we can also observe that, for any real α, the
operator

exp−α
√

1 + τ2 · (− d2

dτ2
+ (τ + ξ0)2 −Θ0)−1 · expα

√
1 + τ2

extends continuously on L2(R) and S(R).
One can also show by the same technique that

(A.15) τ ju
(k)
0 (τ) ∈ L2(R+ ; exp−ατ) , for all α > 0 , and for all j, k .

With additional work, one could actually get a better decay. �

Appendix B. Coordinates near the boundary

It is convenient in most calculations to straighten out the boundary by a
coordinate transformation. This, quite standard, procedure, will be defined
below. Let z0 ∈ ∂Ω and let ` be the length of the boundary ∂Ω and I =
] − `/2, `/2] . Let M ∈ C∞(I; ∂Ω) be a parametrization of ∂Ω such that
M(0) = z0 and s is the distance inside ∂Ω between M(s) and z0. We denote
by

T (s) := M ′(s) ,

the unit tangent vector of ∂Ω at M(s) and the scalar curvature by κ(s),
which can be defined by

T ′(s) = κ(s) ν(s) ,

where ν(s) is the interior normal unit vector of ∂Ω at M(s).
Moreover the parametrization is chosen positive:

det (T (s), ν(s)) = 1, ∀ s ∈ I .

For any z ∈ Ω , we denote by t(z) the standard distance of z to ∂Ω :

t(z) = inf
ω∈∂Ω

|z − ω| .

So, there exists t0 > 0 and a diffeomorphism of class C∞:

ψ : Ωt0 → S1
`/(2π) × (0, t0) ,(B.1)

such that ψ(z) = w = (s(z), t(z)) and |z −M(s(z))| = t(z) .
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We have denoted, for small enough ε, by Ωε the tubular neighborhood
of ∂Ω:

Ωε := {z ∈ Ω; dist(z, ∂Ω) < ε}
and S1

r is the circle of radius r is identified with [−πr, πr[ . So we have the
identity

(B.2) z = M(s(z)) + t(z)ν(s(z)), ∀ z ∈ Ωε0 .

From this equality, it is easy to check that

(B.3) T (s(z)) = [1− t(z)κ(s(z))]∇s(z) and ν(s(z)) = ∇t(z) .

So for all u ∈ H1(Ω) such that supp(u) ⊂ Ωε0 ,∫
ω

|(hDz −A)u|2 dz =
∫

K

[
|(hDt − Ã2)v|2 + (1− tκ(s))−2

× |(hDs − Ã1)v|2
]
(1− tκ(s)) dw(B.4)

and

(B.5)
∫

ω

|u|2 dz =
∫

K

|v|2(1− tκ(s)) dw ,

with v(w) = u(ψ−1(w)) , K = I × (0, t0) , w = (s, t) and dw = ds dt .
The magnetic potential Ã satisfies

Ã1 ds+ Ã2 dt = A1 dx+A2 dy .

So

[
∂Ã2

∂s
(w)− ∂Ã1

∂t
(w)] ds ∧ dt = B(z) dx ∧ dy

= B̂(w)[1− tκ(s)] ds ∧ dt ,(B.6)

with ψ(z) = w and B̂ defined as:

(B.7) B̂(w) = B(z) .

This gives:

∂Ã2

∂s
(w)− ∂Ã1

∂t
(w) = B(ψ−1(w))[1− tκ(s)]

= B̂(t, s)(1− tκ(s)) .(B.8)

Then we get the identity between differential operators

(B.9) (hDz −A)2 = a−1[(hDs − Ã1)a−1(hDs − Ã1)

+ (hDt − Ã2)a(hDt − Ã2)] ,

where a(w) = 1− tκ(s).
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The usual Hilbert space L2(Ωt0) is transformed to L2(K; a dw) .
In the new coordinates and using a gauge transform, we can always

assume that the magnetic potential has no normal component in a neigh-
borhood of ∂Ω:

(B.10) Ã2 = 0 .

In this case, we have:

(B.11) ∂tÃ1 = −B̂(t, s)(1− tκ(s)) ,

where B̂ was introduced in (B.7). So we can choose a convenient gauge.

Lemma B.1. — Suppose Ω is a bounded, simply connected domain with
smooth boundary, let t0 be the constant from (B.1) and let [s0, s1] be a
subset of R/|∂Ω| with s1 − s0 < |∂Ω|. Then there exists a constant C > 0
such that, if ~A is a vector potential in Ω with

curl ~A = 1 in Ω ,(B.12)

and with Ã defined above, then there exists a gauge function ϕ(s, t) on
(s0, s1)× (0, t0) such that

Ā(s, t) =
(
Ā1(s, t)
Ā2(s, t)

)
:= Ã−∇(s,t)ϕ =

(
−t+ t2k(s)

2

0

)
.(B.13)
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