Elliptic operators and higher signatures
Annales de l'Institut Fourier, Volume 54 (2004) no. 5, p. 1197-1277

Building on the theory of elliptic operators, we give a unified treatment of the following topics: - the problem of homotopy invariance of Novikov's higher signatures on closed manifolds, - the problem of cut-and-paste invariance of Novikov's higher signatures on closed manifolds, - the problem of defining higher signatures on manifolds with boundary and proving their homotopy invariance.

En s'appuyant sur la théorie des opérateurs elliptiques, nous donnons une approche unifiée des sujets suivants : - le problème de l'invariance par homotopie des hautes signatures de Novikov des variétés compactes orientées sans bord, - le problème de l'invariance par coupure et collage des hautes signatures de Novikov des variétés compactes orientées sans bord, - le problème de définir les hautes signatures de variétés à bord et de prouver leur invariance par homotopie.

DOI : https://doi.org/10.5802/aif.2049
Classification:  19E20,  53C05,  58J05,  58J28
@article{AIF_2004__54_5_1197_0,
     author = {Leichtnam, \'Eric and Piazza, Paolo},
     title = {Elliptic operators and higher signatures},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {54},
     number = {5},
     year = {2004},
     pages = {1197-1277},
     doi = {10.5802/aif.2049},
     zbl = {1069.58014},
     mrnumber = {2127848},
     language = {en},
     url = {http://www.numdam.org/item/AIF_2004__54_5_1197_0}
}
Elliptic operators and higher signatures. Annales de l'Institut Fourier, Volume 54 (2004) no. 5, pp. 1197-1277. doi : 10.5802/aif.2049. http://www.numdam.org/item/AIF_2004__54_5_1197_0/

[1] M. Atiyah, Global theory of elliptic operators, Univ. of Tokyo Press, 1970, p. 21-30 | Zbl 0193.43601

[2] M.F. Atiyah & R. Bott, The index theorem for manifolds with boundary, 1964, p. 175-186 | Zbl 0163.34603

[3] M.F. Atiyah, H. Donnelly & I.M. Singer, Eta invariants, signature defects of cusps and values of L-functions, Ann. of Math. 118 (1983) p. 131-177 | MR 707164 | Zbl 0531.58048

[4] M.F. Atiyah, H. Donnelly & I.M. Singer, Signature defects of cusps and values of L-functions: the non-split case., Ann. of Math 119 (1984) p. 635-637 | MR 744866 | Zbl 0577.58030

[5] M.F. Atiyah, V.K. Patodi & I.M. Singer, Spectral asymmetry and Riemannian geometry. I, Math. Proc. Camb. Phil. Soc 77 (1975) p. 43-69 | MR 397797 | Zbl 0297.58008

[6] M.F. Atiyah, V.K. Patodi & I.M. Singer, Spectral asymmetry and Riemannian geometry. II, Math. Proc. Camb. Phil. Soc 78 (1975) p. 405-432 | MR 397798 | Zbl 0314.58016

[7] M.F. Atiyah, V.K. Patodi & I.M. Singer, Spectral asymmetry and Riemannian geometry. III, Math. Proc. Camb. Phil. Soc 79 (1976) p. 71-99 | MR 397799 | Zbl 0325.58015

[8] M. Atiyah & I. Singer, The index of elliptic operators. IV., Annals of Math. (2) 93 (1971) p. 119-138 | MR 279833 | Zbl 0212.28603

[9] M. Atiyah & I. Singer, Index theory of skew-adjoint Fredholm operators, Inst. Hautes Études Sci. Publ. Math 37 (1969) p. 305-326 | Numdam | MR 285033 | Zbl 0194.55503

[10] P. Baum & A. Connes, Leafwise homotopy equivalence and rational Pontrjagin classes, Foliations, Advances Studies in Pure Math. 5, North-Holland, 1985, p. 1-14 | Zbl 0641.57008

[11] P. Baum, A. Connes & N. Higson, Classifying Space for proper actions and K-Theory of group C * -algebras, Contemporary Mathematics 167 (1994) p. 241-291 | MR 1292018 | Zbl 0830.46061

[12] P. Baum & R. Douglas, K homology and index theory, Proc. Sympos. Pure Math. Soc. 38, Amer. Math. Soc., 1982, p. 117-173 | Zbl 0532.55004

[13] N. Berline, E. Getzler & M. Vergne, Heat kernels and Dirac operators, 298, Springer Verlag, 1992 | MR 1215720 | Zbl 0744.58001

[14] J.-M. Bismut, The Atiyah-Singer index theorem for families of Dirac operators: two heat-equation proofs, Inv. Math 83 (1986) p. 91-151 | MR 813584 | Zbl 0592.58047

[15] J.-M. Bismut & J. Cheeger, η-Invariants and their adiabatic limits, Jour. of the Amer. Math. Soc 2 (1989) p. 33-70 | MR 966608 | Zbl 0671.58037

[16] J.-M. Bismut & J. Cheeger, Families index for manifolds with boundary, superconnections and cones I, Jour. Funct. Anal. 89 (1990) p. 313-363 | MR 1042214 | Zbl 0696.53021

[17] J.-M. Bismut & D.S. Freed, The analysis of elliptic families: Metrics and connections on determinant bundles, Comm. Math. Phys 106 (1986) p. 159-176 | MR 853982 | Zbl 0657.58037

[18] J.-M. Bismut & D.S. Freed, The analysis of elliptic families: Dirac operators, eta invariants and the holonomy theorem of Witten, Comm. Math. Phys. 107 (1986) p. 103-163 | MR 861886 | Zbl 0657.58038

[19] B. Booss-Bavnbek & K. Wojciechowski, Elliptic boundary problems for Dirac operators, Mathematics : theory and applications, Birkhäuser, 1993 | Zbl 0797.58004

[20] L. Boutet De Monvel, Boundary problems for pseudodifferential operators, Acta Math. 126 (1971) p. 11-51 | MR 407904 | Zbl 0206.39401

[21] P. Brown, R. Douglas & P. Fillmore, Unitary equivalence modulo the compact operators and extensions of C * -algebras, Lecture Notes in Math 345, Springer Verlag, 1973, p. 58-128 | Zbl 0277.46053

[22] J. Brüning & R. Seeley, An index theorem for first order regular singular operators, Amer. J. Math 110 (1988) p. 659-714 | MR 955293 | Zbl 0664.58035

[23] U. Bunke, On the gluing problem for the η-invariant, Journal of Differential Geometry 41 (1995) p. 397-448 | MR 1331973 | Zbl 0821.58037

[24] J. Cheeger, On the spectral geometry of spaces with cone-like singularities, Proc. Nat. Acad. Sci. U.S.A 76 (1979) no.5 p. 2103-2106 | MR 530173 | Zbl 0411.58003

[25] J. Cheeger, Spectral geometry of singular Riemann spaces, J. Differential Geom. 18 (1983) p. 575-657 | MR 730920 | Zbl 0529.58034

[26] A. Chou, The Dirac operator on spaces with conical singularities and positive scalar curvatures, Trans. Amer. Math. Soc. 289 (1985) no.1 p. 1-40 | MR 779050 | Zbl 0559.58024

[27] A. Connes, Noncommutative Geometry. Part I: The Chern character in K-Homology. Part II de Rham homology and noncommutative algebras., Preprint I.H.E.S, 1983

[28] A. Connes, Noncommutative Geometry, Academic Press, 1994 | MR 1303779 | Zbl 0818.46076

[29] A. Connes & H. Moscovici, Cyclic cohomology, the Novikov conjecture and hyperbolic groups, Topology 29 (1990) p. 345-388 | MR 1066176 | Zbl 0759.58047

[30] A. Connes, M. Gromov & H. Moscovici, Conjecture de Novikov et fibrés presque plats, C.R. Acad. Sci. Paris Sér. I Math 310 (1990) no.5 p. 273-277 | MR 1042862 | Zbl 0693.53007

[31] A. Connes, M. Gromov & H. Moscovici, Group cohomology with Lipschitz control and higher signatures, Geom. Funct. Anal 3 (1993) no.1 p. 1-78 | MR 1204787 | Zbl 0789.58069

[32] J. Cuntz, Noncommutative simplicial complexes and the Baum-Connes conjecture, Geom. Funct. Anal 12 (2002) no.2 p. 307-329 | MR 1911662 | Zbl 1037.46060

[33] X. Dai & W. Zhang, Splitting the family index, Comm. Math. Phys 182 (1996) p. 303-318 | MR 1447295 | Zbl 0874.58076

[34] X. Dai & W. Zhang, Higher spectral flow, Journal of Funct. Analysis 157 (1998) p. 432-469 | MR 1638328 | Zbl 0932.37062

[35] X. Dai & W. Zhang, Real embeddings and the Atiyah-Patodi-Singer index theorem for Dirac operators, Loo-Keng Hua: a great mathematician of the twentieth century, Asian J. Math 4 (2000) no.4 p. 775-794 | MR 1870658 | Zbl 0995.58014

[36] M. Farber & S. Weinberger, On the zero-in-the-spectrum conjecture, Ann. of Math. (2) 154 (2001) no.1 p. 139-154 | MR 1847591 | Zbl 0992.58012

[37] S. Ferry, A. Ranicki & J. Rosenberg, A history and survey of the Novikov conjecture., Lecture Note Ser. 226, Cambridge Univ. Press, 1995, p. 7-66 | Zbl 0954.57018

[38] E. Getzler, Pseudodifferential operators on supermanifolds and the Atiyah-Singer index theorem, Comm. Math. Phys 92 (1983) no.2 p. 163-178 | MR 728863 | Zbl 0543.58026

[39] E. Ghys, Les groupes hyperboliques, Astérisque 189-190, 1990, p. 203-238 | Numdam | Zbl 0744.20036

[40] E. Ghys & P. De La Harpe, Hyperbolic groups in the theory of Mikhael Gromov, Birkhäuser, 1990

[41] D. Grieser, Basics of the b-calculus, Oper. Theory Adv. Appl 125, Birkhäuser, 1999, p. 30-84 | Zbl 0987.58011

[42] A. Gorokhovsky & J. Lott, Local index theory over etale groupoids, J. Reine angew. Math 560 (2003) p. 151-198 | MR 1992804 | Zbl 1034.58021

[43] M. Gromov, Hyperbolic groups, Math. Sci. Res. Inst. Publ 8, Springer, 1987, p. 75-263 | Zbl 0634.20015

[44] M. Gromov, Positive curvature, macroscopic dimension, spectral gaps and higher signatures, Progress in Mathematics, Birkäuser, 1995 | Zbl 0945.53022

[45] M. Gromov & M. Shubin, Von Neumann spectra near zero, Geom. Funct. Anal 1 (1991) no.4 p. 375-404 | MR 1132295 | Zbl 0751.58039

[46] E. Guentner, N. Higson & S. Weinberger, The Novikov Conjecture for linear groups, Preprint, 2003 | Numdam | Zbl 1073.19003

[47] N. Higson, A Primer in KK-Theory, Proc. Sympos. Pure Math. 51, 1990, p. 239-283 | Zbl 0718.46052

[48] N. Higson & G. Kasparov, Operator K-theory for groups which act properly and isometrically on Hilbert space, Electron. Res. Announc. Amer. Math. Soc 3 (1997) p. 131-142 | MR 1487204 | Zbl 0888.46046

[49] N. Higson & G. Kasparov, E-theory and KK-theory for groups which act properly and isometrically on Hilbert space, Invent. Math. 144 (2001) no.1 p. 23-74 | MR 1821144 | Zbl 0988.19003

[50] N. Higson & J. Roe, John Analytic K-homology, Oxford University Press, Oxford Mathematical Monographs, Oxford Science Publications, 2000 | MR 1817560 | Zbl 0968.46058

[51] N. Higson, J. Roe & T. Schick, Spaces with vanishing l 2 -homology and their fundamental groups (after Farber and Weinberger), Geom. Dedicata 87 (2001) no.1-3 p. 335-343 | MR 1866855 | Zbl 0991.57002

[52] M. Hilsum, Index classes of Hilbert modules with boundary, Preprint Paris 6, March 2001 | MR 719945

[53] M. Hilsum & G. Skandalis, Invariance de la signature à coefficients dans un fibré presque plat, J. Reine Angew. math 423 (1990) p. 73-99 | MR 1142484 | Zbl 0731.55013

[54] M. Hirsch, Differential topology, Graduate texts in mathematics 33, Springer-Verlag, 1976 | Zbl 0356.57001

[55] F. Hirzebruch, The signature theorem: reminiscences and recreation, Ann. of Math. Studies 70, Princeton Univ. Press, 1970, p. 3-31 | Zbl 0252.58009

[56] R. Ji, Smooth dense subalgebras of reduced group C * -algebras, Schwartz cohomology of groups, and cyclic cohomology, J. Funct. Anal. 107 (1992) no.1 p. 1-33 | MR 1165864 | Zbl 0787.46043

[57] M. Joachim & T. Schick, Positive and negative results concerning the Gromov-Lawson-Rosenberg conjecture, Contemp. Math 258, Amer. Math. Soc., 2000, p. 213-226 | Zbl 0980.53050

[58] P. Jolissaint, Rapidly decreasing functions in reduced C * -algebras of groups, Trans. Amer. Math. Soc 317 (1990) no.1 p. 167-196 | MR 943303 | Zbl 0711.46054

[59] M. Karoubi, Homologie cyclique et K-théorie, Astérisque 149 (1987) | MR 913964 | Zbl 0648.18008

[60] J. Kaminker & J. Miller, Homotopy invariance of the analytic index of signature operators over C * -algebras, J. Operator Theory 14 (1985) p. 113-127 | MR 789380 | Zbl 0614.46062

[61] U. Karras, M. Kreck, W. Neumann & E. Ossa, Cutting and pasting of manifolds; SK-groups, Publish or Perish, 1973 | MR 362360 | Zbl 0258.57010

[62] G. Kasparov, Topological invariants of elliptic operators K-homology (Russian), Math. USSR-Izv 9 (1975) no.4 p. 751-792 | MR 488027 | Zbl 0337.58006

[64] G. Kasparov, Equivariant KK-theory and the Novikov conjecture, Invent. Math 91 (1988) no.1 p. 147-201 | MR 918241 | Zbl 0647.46053

[65] G. Kasparov, Novikov’s conjecture on higher signatures: The operator K-theory approach, Contemporary Math 145 (1993) p. 79-99 | Zbl 0788.19005

[66] G. Kasparov & G. Skandalis, Groups acting on buildings, operator K-theory, and Novikov’s conjecture, K-Theory 4 (1991) no.4 p. 303-337 | MR 1115824 | Zbl 0738.46035

[67] G. Kasparov & G. Skandalis, Groups acting properly on bolic spaces and the Novikov conjecture, Ann. of Math 158 (2003) p. 165-206 | MR 1998480 | Zbl 1029.19003

[68] N. Keswani, Geometric K-homology and controlled paths, New York J. Math 5 (1999) p. 53-81 | MR 1701826 | Zbl 0930.46057

[69] V. Lafforgue, K-théorie bivariante pour les algèbres de Banach et conjecture de Baum-Connes, Invent. Math 149 (2002) no.1 p. 1-95 | MR 1914617 | Zbl 01965420

[70] M. Lesch, Operators of Fuchs type, conical singularities, and asymptotic methods, Teubner-Texte zur Mathematik 136, B. G. Teubner Verlagsgesellschaft mbH, 1997 | Zbl 00978662

[71] B. Lawson & M-L. Michelsohn, Spin Geometry, Princeton mathematical series 38, Princeton University Press, 1989 | MR 1031992 | Zbl 0688.57001

[72] E. Leichtnam, J. Lott & P. Piazza, On the homotopy invariance of higher signatures for manifolds with boundary, Journal of Differential Geometry 54 (2000) p. 561-633 | MR 1823315 | Zbl 1032.58012

[73] E. Leichtnam, W. Lück & M. Kreck, On the cut-and-paste property of higher signatures on a closed oriented manifold, Topology 41 (2002) p. 725-744 | MR 1905836 | Zbl 0997.57040

[74] E. Leichtnam & P. Piazza, The b-pseudo-differential calculus on Galois coverings and a higher Atiyah-Patodi-Singer index theorem, Mémoires de la Société Mathématiques de France 68 (1997) | Numdam | Zbl 0942.58003

[75] E. Leichtnam & P. Piazza, Spectral sections and higher Atiyah-Patodi-Singer index theory on Galois coverings, GAFA 8 (1998) p. 17-58 | MR 1601842 | Zbl 0913.58055

[76] E. Leichtnam & P. Piazza, A Higher Atiyah-Patodi-Singer Index theorem for the signature operator on Galois Coverings, Annals of Global Analysis and Geometry 18 (2000) p. 171-189 | MR 1744589 | Zbl 0957.58017

[77] E. Leichtnam & P. Piazza, Homotopy invariance of twisted higher signatures on manifolds with boundary, Bull. Soc. Math. France 127 (1999) p. 307-331 | Numdam | MR 1708639 | Zbl 0945.58020

[78] E. Leichtnam & P. Piazza, On higher eta invariants and metrics of positive scalar curvature, K-Theory 24 (2001) p. 341-359 | MR 1885126 | Zbl 1010.58019

[79] E. Leichtnam & P. Piazza, Dirac index classes and the noncommutative spectral flow, Jour. Funct. Anal 200 (2003) p. 348-400 | MR 1979016 | Zbl 1030.58018

[80] E. Leichtnam & P. Piazza, Etale Groupoids, eta invariants and index theory, e-print. To appear in J. Reine Angew. Math, math.DG/0308184, August 2003 | Zbl 1088.58010

[81] E. Leichtnam & P. Piazza, Cut-and-Paste on Foliated Bundles, e-print. To appear in the Contemporary Mathematics. Volume Spectral Geometry of Manifolds with boundary (ed. B. Booss-Bavnbek, G. Grubb, K. Wojciechowski), math.DG/0407401, July 2004 | MR 2114488 | Zbl 1074.58010

[82] J. Lott, Superconnections and higher index theory, GAFA 2 p. 421-454 | MR 1191568 | Zbl 0777.58038

[83] J. Lott, Higher eta invariants, K-Theory 6 (1992) p. 191-233 | MR 1189276 | Zbl 0773.58026

[84] J. Lott, Diffeomorphisms and noncommutative analytic torsion, Memoirs American Math. Soc 141 (1999) | MR 1618772 | Zbl 0942.58002

[85] J. Lott, The zero-in-the-spectrum question, Enseign. Math (2) 42 (1996) no.3-4 p. 341-376 | MR 1426443 | Zbl 0874.58086

[86] J. Lott, Signatures and higher signatures on S 1 -quotients, Math. Annalen 316 (2000) p. 617-657 | MR 1758446 | Zbl 0946.57030

[87] J. Lott & W. Lück, L 2 -topological invariants of 3-manifolds, Inventiones Math 120 p. 15-60 | MR 1323981 | Zbl 0876.57050

[88] W. Lueck & H. Reich, The Baum-Connes and the Farrell-Jones Conjectures in K- and L-Theory, To appear in K-Theory handbook | Zbl 1120.19001

[89] G. Lusztig, Novikov's higher signature and families of elliptic operators, J. Differential Geometry 7 (1972) p. 229-256 | MR 322889 | Zbl 0265.57009

[90] V. Mathai, The Novikov conjecture for low degree cohomology classes, Geometriae Dedicata 99 (2003) p. 1-15 | MR 1998926 | Zbl 1029.19006

[91] R. Mazzeo & P. Piazza, Dirac operators, heat kernels and microlocal analysis. II: Analytic surgery., Rend. Mat. Appl. (7) 18 (1998) no.2 p. 221-288 | MR 1659838 | Zbl 0926.58017

[92] R. Melrose, The Atiyah-Patodi-Singer index theorem, Research Notes in Mathematics 4, A.K. Peters, 1993 | MR 1348401 | Zbl 0796.58050

[93] R. Melrose & V. Nistor, Homology of pseudodifferential operators I (manifolds with boundary), to appear in Amer. J. Math, 2003

[94] R. Melrose & P. Piazza, Families of Dirac operators, boundaries and the b-calculus, Journal of Differential Geometry 46 (1997) p. 99-180 | MR 1472895 | Zbl 0955.58020

[95] R. Melrose & P. Piazza, An index theorem for families of Dirac operators on odd-dimensional manifolds with boundary, Journal of Differential Geometry 46 (1997) p. 287-334 | MR 1484046 | Zbl 0920.58053

[96] J. Milnor & J. Stasheff, Characteristic Classes, Annals of Math. Studies 76 (1974) | MR 440554 | Zbl 0298.57008

[97] I. Mineyev & G. Yu, The Baum-Connes conjecture for hyperbolic groups, Invent. Math (2002) p. 97-122 | MR 1914618 | Zbl 1038.20030

[98] A. Mishchenko, Homotopy invariants of non-simply connected manifolds. I: Rational Invariants, Math. USSR-Izvestija 4 (1970) p. 509-519 | Zbl 0232.55015

[99] A. Mishchenko, C * -algebras and K-theory, Lecture notes in Math 763, Springer, 1979, p. 262-274 | Zbl 0444.57014

[100] A. Mishchenko & A. Fomenko, The index of elliptic operators over C * -algebras (Russian), Izv. Akad. Nauk SSSR Ser. Mat 43 (1979) no.4 p. 831-859 | MR 548506 | Zbl 0416.46052

[101] W. Müller, Signature defects of cusps of Hilbert modular varieties and values of L-series at s=1, J. Diff. Geometry 20 (1984) p. 55-119 | MR 772126 | Zbl 0575.10023

[102] W. Müller, L 2 -index theory, eta invariants and values of L-functions, Contemporary Mathematics 105 (1990) p. 145-187 | Zbl 0705.58048

[103] W. Neumann, Manifold cutting and pasting groups, Topology 14 (1975) p. 237-244 | MR 380837 | Zbl 0311.57007

[104] C. Ogle, Assembly maps, K-theory, and hyperbolic groups, K-Theory 6 (1992) no.3 p. 235-265 | MR 1189277 | Zbl 0776.19004

[105] P. Piazza, On the index of elliptic operators on manifolds with boundary, J. Funct. Anal 117 (1993) no.2 p. 308-359 | MR 1244939 | Zbl 0793.58035

[106] P. Piazza & T. Schick, Bordism, rho-invariants and the Baum-Connes conjecture, e-print, math.KT/0407388, July 2004

[107] D. Quillen, Superconnections and the Chern character, Topology 24 (1985) p. 89-95 | MR 790678 | Zbl 0569.58030

[108] M. Ramachandran, Von Neumann index theorems for manifolds with boundary, Journal of Differential Geometry 38 (1993) no.2 p. 315-349 | MR 1237487 | Zbl 0787.58040

[109] A. Ranicki, Exact sequences in the algebraic theory of surgery, Princeton University Press, 1981 | MR 620795 | Zbl 0471.57012

[110] J. Rosenberg, C * -algebras, positive scalar curvature and the Novikov conjecture, Publ. Math. IHES 58 (1983) p. 197-212 | Numdam | MR 720934 | Zbl 0526.53044

[111] J. Rosenberg, C * -algebras, positive scalar curvature and the Novikov conjecture II, Pitman Res. Notes Math 123, 1986, p. 342-374 | Zbl 0658.53039

[112] J. Rosenberg, C * -algebras, positive scalar curvature and the Novikov conjecture III, Topology 25 (1986) p. 319-336 | MR 842428 | Zbl 0605.53020

[113] T. Schick, Operator algebra and Topology, ICTP Lect. Notes Volume 9, 2002, p. 571-660 | Zbl 02149094

[114] T. Schick, Index, KK and connections, Preprint, 2003

[115] Ju. P. Solov'Ev, Discrete subgroups, Bruhat-Tits buildings and homotopy invariance of higher signatures (Russian), Uspehi Mat. Nauk 31 (1976) no.1(187) p. 261-262 | MR 420646 | Zbl 0335.57020

[116] Yu. P. Solovyov & E.V. Troitsky, C * -algebras and elliptic operators in differential topology. Translated from the 1996 Russian original by Troitsky., Mathematical Monographs 192, American Mathematical Society, 2001 | Zbl 0958.46038

[117] S. Stolz, Positive Scalar Curvature Metrics. Existence and Classification Questions, Birkhäuser Verlag, 1994 | Zbl 0848.57021

[118] B. Tsygan, Homology of matrix Lie algebras over rings and Hochschild homology, Russian Math. Surv 38 (1983) no.2 p. 198-199 | MR 695483 | Zbl 0526.17006

[119] A. Valette, Introduction to the Baum-Connes conjecture. From notes taken by Indira Chatterji. With an appendix by Guido Mislin., Lectures in Mathematics ETH Zürich., Birkhäuser Verlag, 2002 | MR 1907596 | Zbl 01853001

[120] N. Wegge-Olsen, K-Theory and C * -algebras, Oxford University Press, 1993 | MR 1222415 | Zbl 0780.46038

[121] S. Weinberger, Aspects of the Novikov conjecture., Contemp. Math. 105, Amer. Math. Soc., 1990, p. 281-297 | Zbl 0705.57013

[122] S. Weinberger, Higher ρ-invariants, Contemporary Mathematics 231, 1999 | Zbl 0946.57037

[123] G. Yu, The coarse Baum-Connes conjecture for spaces which admit a uniform embedding into Hilbert space, Invent. Math 139 (2000) no.1 p. 201-240 | MR 1728880 | Zbl 0956.19004

[124] F. Wu, The noncommutative spectral flow, unpublished preprint, 1997

[125] F. Wu, The Higher Γ-index for coverings of manifolds with boundaries, Fields Institute Communications 17 (1997) p. 169-183 | MR 1478709 | Zbl 0896.58062

[16] J.-M. Bismut & J. Cheeger, Families index for manifolds with boundary, superconnections and cones. II, J. Funct. Anal. 90 (1990) no.2 p. 306-354 | MR 1052337 | Zbl 0711.53023

[27] A. Connes, Noncommutative geometry. Part I: the Chern character in K-homology. Part II: de Rham homology and noncommutative algebras, Publications I.H.E.S. 62 (1985) p. 257-360 | MR 823176

[62] G. Kasparov, Topological invariants of elliptic operators K-homology, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975) no.4 p. 796-838 | MR 488027 | Zbl 0328.58016

[63] G. Kasparov, K-Theory, group C * -algebras and higher signatures (Conspectus), London Math. Soc. Lecture Note Ser. 226, Cambridge Univ. Press, 1995, p. 101-146 | Zbl 0957.58020

[98] A. Mishchenko, Homotopy invariants of non-simply connected manifolds. I: Rational Invariants, Math. USSR Izv. 15 (1980) p. 87-112 | Zbl 0232.55015

[115] Ju. P. Solov'Ev, Discrete subgroups, Bruhat-Tits buildings and homotopy invariance of higher signatures (English translation), Russian Math. Survey 31 (1976) no.1 | MR 420646 | Zbl 0335.57020