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ELLIPTIC OPERATORS AND HIGHER SIGNATURES

by Eric LEICHTNAM &#x26; Paolo PIAZZA

1. Introduction.

Let M4k an oriented 4k-dimensional compact manifold. Let g be a
Riemannian metric on M. Let us consider the Levi-Civita connection V9

and the Hirzebruch L-form L(M, a closed form in (M) with de
Rham class L(M) := [L(M, E independent of g. Let now
M be closed; then

(1.1)
the integral over M of L(M, is an oriented homotopy invariant of M.

In fact, if [M] C H* (M, R) denotes the fundamental class of M then

the last term denoting the topological signature of M, an homotopy
invariant of M. We shall call the integral fm L(M, the lower signature
of the closed manifold M.

A second fundamental property of f M L(M, Vg) =-  L(M), [M] &#x3E; is

its cut-and-paste invariance: if Y and Z are two manifolds with diffeomor-

phic boundaries and if

with cp, ’Ø : 8Y - YZ oriented diffeomorphisms, then 

Keywords: Elliptic operators - Boundary-value problems - Index theory - Eta invari-
ants - Novikov higher signatures - Homotopy invariance - Cut-and-paste invariance.
Math. classification: 19E20 - 53C05 - 58J05 - 58J28.



1198

A third fundamental property will involve a manifold M with bound-

ary. Using Stokes theorem we see easily that the integral of the L-form is
now metric dependent; in particular it is not homotopy invariant. However,
by the Atiyah-Patodi-Singer index theorem for the signature operator, we
know that there exists a boundary correction term such that

is an oriented homotopy invariant.

In fact, this difference equals the topological signature of the manifold with
boundary M. We call the difference appearing in (1.2) the lower signature
of the manifold with boundary M. The term 9B8M), i.e. the term

we need to subtract in order to produce a homotopy invariant out of

fm L(M, is a spectral invariant of the signature operator 
on 8M; more precisely, this invariant measures the asymmetry of the

spectrum of this (self-adjoint) operator with respect to 0 E R. We shall
review these basic facts in Section 2 and Section 3.

Let now r be a finitely generated discrete group. Let B1, be the
classifying space for 1,. We shall be interested in the real cohomology groups
H*(Bf,JR). Let r - M - M be a Galois F-covering of an oriented
manifold M. For example, h = 7rl (M) and M is the universal covering
of M. From the classifying theorem for principal bundles we know that
F - M -~ M is classified by a continuous map r : M - BF. We shall
identify F - M -~ M with the pair (M, r : M -~ BF). Assume at this
point that M is closed. Fix a class [c] E H*(Bf, R); then r* [c] E H* (M, R)
and it makes sense to consider the number  L(M) U r* ~c~, [M] &#x3E; E R. The

collection of real numbers

are called the Novikov’s higher signatures associated to the covering (M, r :
M - It is important to notice that these number are not well defined
if M has a boundary; in fact, in this case L(M) U r* ~c~ E H* (M, R) whereas
[M] E H*(M,8M,JR), and the two classes cannot be paired.

One can give a natural notion of homotopy equivalence between
Galois f-coverings. One can also give the notion of 2 coverings being cut-
and-paste equivalent. In this paper we shall address the following three
questions:

Question 1. Are Novikov’s higher signatures homotopy invariant?

Question 2. Are Novikov’s higher signatures cut-and-paste inva-
riant ?
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Question 3. If ~M ~ 0, can we define higher signatures and prove
their homotopy invariance ? Of course we want these higher signatures on
a manifold with boundary M to generalize the lower signature

which is indeed a homotopy invariant.

Question 1 is still open and is known as the Novikov conjecture. It
has been settled in the affirmative for many classes of groups. In this survey
we shall present two methods for attacking the conjecture, both involving
in an essential way properties of elliptic operators.

The answer to Question 2 is negative: the higher signatures are not
cut-and-paste invariants (we shall present a counterexample). However,
one can give sufficient conditions on the group F and on the separating
hypersurface ensuring that the higher signatures are indeed cut-and-paste
invariant.

Finally, under suitable assumption on (8M, and on the group F

one can defines higher signatures on a manifold with boundary M equipped
with a classifying map r : M -~ BF and prove their homotopy invariance.
Notice that part of the problem in Question 3 is to give a meaningful
definition. Our answers to Question 2 and Question 3 will use in a crucial

way properties of elliptic boundary-value problems.

There are several excellent surveys on Novikov’s higher signatures; we
mention here the very complete historical perspective by Ferry, Ranicki and
Rosenberg [37], the stimulating article by Gromov [44], the one by Kasparov
[65] and the monograph by Solovyov-Troitsky [116]. The novelty in the
present work is the unified treatment of closed manifolds and manifolds
with boundary as well as the treatment of the cut-and-paste problem for

higher signatures on closed manifolds.

Acknowledgements. This article will appear in the proceedings of a
conference in honor of Louis Boutet de Monvel. The first author was very

happy to be invited to give a talk at this conference; he feels that he learnt
a lot of beautiful mathematics from Boutet de Monvel, especially at Ecole
Normale Sup6rieure (Paris) during the eighties.

Both authors were partially supported by the EU Research Training
Network "Geometric Analysis" HPRN-CT-1999-00118 and by a CNR-
CNRS cooperation project.

We thank the referee for helpful comments.
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2. The lower signature and its homotopy invariance.

2.1. The L-differential form

Let (M, g) be an oriented Riemannian manifold of dimension m.
We fix a Riemannian connection V on the tangent bundle of M and we
consider ~2, its curvature. In a fixed trivializing neighborhood U we have
V2 - R with R a m x m-matrix of 2-forms. We consider the L-differential
form L(M, B7) E SZ* (M) associated to B7. Recall that L(M, B7) is obtained
by formally substituting the matrix of 2-forms in the power-series
expansion at A = 0 of the analytic function

Since Q* (M) = 0 if * &#x3E; dim M, we see that the sum appearing in L ( 2 R)
is in fact finite. More importantly, since L(.) is SO(nt)-invariant, i.e.

one can check easily that L(M, V) is globally defined; it is a differential form
in SZ4* (M, II~) . One can prove the following two fundamental properties of
the L-differential form:

where V’ is any other Riemannian connection and where T(V, V’) is the
transgression form defined by the two connections. Consequently the de
Rham class L(M) = [L(M, B1)] E is well defined; it is called the

Hirzebruch L-class.

In what follows we shall always choose the Levi-Civita connection
associated to g, as our reference connection.

2.2. The lower signature on closed manifolds
and its homotopy invariance

Assume now that M is closed (- without boundary) and that
dim M = 4k. Consider



1201

Because of the properties (2.1), this integral does not depend on the choice
of g and is in fact equal to  L(M), [M] &#x3E;, the pairing between the
cohomology class L(M) and the fundamental class [M] E H4k (M; R).

THEOREM 2.3. - The integral of the L-form

is an integer and is an oriented homotopy invariant.

Proof. With some of what follows in mind, we give an index-
theoretic proof of this theorem, in two steps.

First step: by the Atiyah-Singer index theorem

where on the right hand side the index of the signature operator associated
to g and our choice of orientation appears l. This proves that

Second step: using the Hodge theorem one can check that

i.e. the signature of the bilinear form H2k(M) x H2k (M) - R

J 1Vl

This is clearly an oriented homotopy invariant and the theorem is

proved. D

1 Let us recall the definition of the signature operator on a 2£-dimensional oriented
Riemannian manifold. Consider the Hodge star operator

it depends on g and the fixed orientation. Let

T2 = 1 and we have a decomposition °è(M) = Q+(M) The operator d + d*,
extended in the obvious way to the complex differential forms °è (M), anticommutes
with T. The signature operator is simply defined as

If we wish to be precise, we shall denote the signature operator on the Riemannian
manifold (M, g) by 
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We shall also call fM L(M, the lower signature of the closed
manifold M.

Remark. - The equality

is known as the Hirzebruch signature theorem. The original proof of this
fundamental result was topological, exploiting the cobordism invariance of
both sides of the equation and the structure of the oriented cobordism ring.
See, for example, Milnor-Stasheff [96] and Hirzebruch [55].

Remark. - The formulation and the proof of Hirzebruch theorem

given here is not historically accurate but has the advantage of introducing
the techniques that will be employed later for tackling the homotopy
invariance of the higher signatures of a closed manifold. It is important
to single out informally the two steps in the proof:

(i) connect the lower signature to an index

(ii) prove that the index is homotopy invariant.

2.3. The lower signature on manifolds with boundary
and its homotopy invariance

Assume now that M has a non-empty boundary: 0.
For simplicity, we assume that the metric g is of product-type near the

boundary; thus in a collar neighborhood U of 8M we have g = dx2 + g8
with x E C°° (M) a boundary defining function. We denote the signature
operator on (M, g) by * We consider once again In

contrast with the closed case, this integral does depend now on the choice
of the metric g; in particular it is not an oriented homotopy invariant. To
understand this point we simply observe that if h is a different metric, then,
by ( 2 .1 ) , we get

We ask ourselves if we can add to J~ L(M, a correction term making
it metric-independent and, hopefully, homotopy-invariant; formula (2.4)
shows that it should be possible to add a term that only depends on the
metric on o~M.
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In order to state the result we need a few definitions. Consider the

boundary aM with the induced metric and orientation. Let theam, ga
signature operator on the odd dimensional Riemannian manifold ga);
this is the so-called odd signature operator and it is defined as follows:

with 02p(8M) and E = -1 if 0 E 02p-l(8M). This is a formally
self-adjoint first order elliptic differential operator on the closed manifold

We shall sometime denote the boundary signature operator by 
Thanks to the spectral properties of elliptic differential operators on closed
manifolds, we know that the following series is absolutely convergent for
Re(s) » 0:

with A running over the non-zero eigenvalues of ,98 ). 
One can mero-

morphically continue this function to the all complex plane; the points
Sk - dim(8M) - k are poles of the meromorphic continuation. It is a non-
trivial result that the point s = 0 is regular and one sets

This is the eta invariant associated to it is a spectral invariant

measuring the asymmetry of the spectrum of a subset of the real
(am,ga)’

line, with respect to the origin. We can now state the main theorem of this
subsection:

THEOREM 2.8 (Atiyah-Patodi-Singer). - The difference

is an integer and is an oriented homotopy invariant of the pair (M, 8M).
We call the difference f,. ) the lower signature

of the manifold with boundary M. 

Proof. Following Atiyah-Patodi-Singer [5] we give an index theo-
retic proof of this theorem, once again in two steps.

There is a well defined restriction map

Next we observe that to the formally self-adjoint operator we
(am,ga)

can associate the spectral projection H j onto the eigenspaces associated
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to its nonnegative eigenvalues. The operator - on M with

boundary condition

turns out to be Fredholm when acting on suitable Sobolev completions
(more on this in the next subsection). The Atiyah-Patodi-Singer (- APS)
index formula computes its index as

It should be remarked that Ker ga)) has a natural symplectic struc-sign
ture and it is therefore even dimensional. From (2.10) we infer that
(2.11)

This concludes the first step, connecting the lower signature to an index.2
Next, using Hodge theory on the complete manifold M obtained by gluing
to M a semi-infinite cylinder (-oo, 0~ x one can prove that

the signature of M.

Since the latter is an oriented homotopy invariant, the theorem is

proved. D

Remark. - In contrast with the closed case, there is no purely topo-
logical proof of the homotopy invariance of the difference fm L(M, O9) -

on manifolds with boundary; in this case we do need to pass
through the Atiyah-Patodi-Singer index theorem.

Remark. - Part of the motivation for the Atiyah-Patodi-Singer
signature index theorem came from the work of Hirzebruch on Hilbert
modular varieties. For these singular varieties the Hirzebruch signature
formula does not hold; there is a defect associated to each cusp. For Hilbert
modular surfaces Hirzebruch computed this defect and showed that it

was given in terms of the value at s - 1 of certain L-series. He then

conjectured that a similar result was true for any Hilbert modular variety.
The conjecture was established by Atiyah-Donnelly-Singer in [3] [4] and

2 It could be proved that the right hand side of (2.11) is the index of the boundary
value problem corresponding to the projection fl&#x3E; where L c is

the so-called scattering lagrangian. 
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the proof is based in an essential way on the Atiyah-Patodi-Singer index
theorem (with the value of the L-series corresponding to the eta-invariant).
Hirzebruch’s conjecture was also settled independently and with a different
proof by Miiller in [101] (see also [102]).

Remark. - Let N be an odd dimensional oriented manifold. The

definition of eta-invariant can be given for any formally self-adjoint elliptic
pseudo differential operator. The definition is by meromorphic continuation
as in (2.6); the proof that s = 0 is a regular point is non-trivial and it is
due to Atiyah-Patodi-Singer [7]. Moreover, for the odd signature operator

(in fact, for any Dirac-type operator associated to a unitary Clifford
connection) one can give the following formula

Notice that the convergence of this integral near t = 0 is non-trivial and its
justification requires arguments similar to those involved in the heat-kernel
proof of the Atiyah-Singer index theorem, see Bismut-Freed [17], [18].

2.4. More on index theory on manifolds with boundary.

We elaborate further on the analytic features of the above proof. Let
M be a manifold with boundary. Simple examples (such as the 9-operator
on the disc) show that, in general, elliptic operators on M are not Fredholm
on Sobolev spaces. In order to obtain a finite dimensional kernel and

cokernel it is necessary to impose boundary conditions. Among the simplest
boundary conditions are those of local type, Dirichlet, Neumann or more
generally Lopatinski boundary conditions. It is not at all clear that these
classical local boundary conditions give rise to Fredholm operators. And in
fact Atiyah and Bott showed that there exist topological obstructions to the
existence of well-posed local boundary conditions for an elliptic operator on
a manifold with boundary. When these obstructions are zero, Atiyah and
Bott do prove an index theorem, see [2]. The Atiyah-Bott index theorem
has been greatly extended by Boutet de Monvel in [20]. However, precisely
because of their geometric nature, the signature operator is among those

operators for which these obstructions are almost always non-zero. In trying
to prove the signature theorem on manifolds with boundary, Atiyah, Patodi
and Singer introduced their celebrated non-local boundary condition. This
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is the boundary condition explained in the proof of Theorem 2.8. In a
fundamental series of papers [5] [6] [7] they investigated the index theory
of such boundary value problems for general first-order elliptic differential
operators; they also gave important applications to geometry and topology.
Their theory applies to any Dirac-type operator on an even dimensional
manifold with boundary endowed with a Riemannian metric g which is
of product-type near the boundary. The Dirac operators acts between the
sections of a Z2-graded Hermitian Clifford module E = E+ o E- endowed
with a Clifford connection V~ and it is odd with respect to the grading
of E: 

, - ~,

Classical examples of Dirac-type operators are given by the signature
operator Dsign introduced above, the Gauss-Bonnet operator d + d*, with d

equal to the de Rham differential, the Dirac operator on a spin manifold,
the 8-operator on a Kaehler manifold. See Berline-Getzler-Vergne [13] for
more on Dirac operators.

Near the boundary D can be written (up to a bundle isomorphism) as

with u equal to the inward normal variable to the boundary and DaM
the generalized Dirac operator induced on aM. For example, in the case
of the signature operator Dsign the operator induced on the boundary
is simply the odd-signature operator. The boundary operator DaM is an
elliptic and essentially self-adjoint operator on the closed compact manifold

The L2-spectrum is therefore discrete and real. Let (ex) be an L2-
orthonormal basis of eigenfunctions for DaM. Let n&#x3E; be the spectral
projection corresponding to the non-negative eigenvalues of DaM : thus

Thus a section s belongs to iff siaM = The

Atiyah-Patodi-Singer theorem, see [5], states that the operator D+ acting
on the Sobolev completion with range

L2(M, E-), is a Fredholm operator with index

--

Here is the eta invariant of the self-adjoint operator DaM
as introduced in the previous subsection, whereas the density AS =
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A(M, B7E) is the local contribution that would appear in the
heat-kernel proof of the Atiyah-Singer index theorem for Dirac operators.
In the case D is Dirac operator acting on the spinor bundle of a spin mani-
fold, one has AS = A(M, In the case where D is the signature operator
acting on the bundle of differential forms one has AS = L(M, The A-
form A(M, is obtained by substituting X by in the analytic
functions

There are nowadays many alternative approaches to the Atiyah-Patodi-
Singer index formula; we shall mention here the one started by Cheeger,
based on conic metrics (see Cheeger [25], Chou [26] and also Lesch [70]) and
the one, fully developed by Melrose, based on manifolds with cylindrical
ends (see Melrose [92] and also Piazza [105], Melrose-Nistor [93]). For
a proof in the spirit of the embedding proof of the Atiyah-Singer index
formula on closed manifolds see Dai-Zhang [35].

Remark. - Let P = P~ == P* be a finite rank perturbation of the
projection Thus, with still denoting a L2-orthonormal basis of
eigenfunctions for Dan, we require that for some R &#x3E; 0, Pea - e,B if

The operator D+ with domain C°° (M, E+, P) extends once again to a
Fredholm operator with ind(D+, P) E Z. See, for example Booss-Bavnbek
- Wojciechowski [19]. Moreover: let Pl and P2 be two such projections and
let us consider Hj = Pj(L2(8M,ElaM)). One can show easily that the
operator P2 o PI : H2 is Fredholm; its index is called the relative
index of the two projections and is denoted by i(PI, P2). The following
formula is known as the relative index formula ([19)):

For example: ind(D+, = i(II&#x3E;, II» = dim Ker DaM.

3. The cut-and-paste invariance of the lower signature.

Let M and N be two compact 4k-dimensional oriented manifolds
with boundary and let 1, ’lj; : 8M - 8N be two orientation preserving
diffeomorphims. Let N- be N with the reverse orientation. By gluing
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we obtain two closed oriented 4k-dimensional manifolds, M N- and

M U~ N-. We shall say that

are cut-and-paste equivalent.

PROPOSITION 3.1. - The following equality holds:

In words, the integral of the L-class is a cut-and-paste invariant.

In the next three subsections we shall give three different proofs of
this proposition.

3.1. The index-theoretic proof.

We set

Using the Atiyah-Patodi-Singer index theorem we shall prove that

Notice that the 2 manifolds Xo and Xp are, in general, distinct. Fix metrics
and 9’lj; on Xo and Xp respectively. Since the integral of the L-class on

closed manifolds in metric-independent, we can assume that these metrics
are of product type near the embedded hypersurface F := aM. Thus we
can write

with

Denoting generically by B7LC the Levi-Civita connection associated to the
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various restrictions of go, we can write

We explain why these equalities hold. The first one is obvious; in the second
one, we simply added and substracted the same quantities; in the third one,
we applied the Atiyah-Patodi-Singer theorem, keeping in mind that the eta
invariant is orientation reversing; in the fourth one, we used the topological
invariance of sign(.) together with the following two observations:

(i) the diffeomorphism 0 induces a diffeomeorphism between Cyl~ and
[-1,1] x am;

(ii) sign( [- I , 1] x 8M) = 0 (use again the APS-formula).
Since exactly the same argument can be applied to Xp, it follows that

we have proved (3.3) and thus Proposition 3.1.

3.2. The topological proof.

We start with a simplified situation. Let X = MUN- with 8N;
in other words 0 - Id. Using Poincar6 duality and reasoning in terms of
intersection of cycles one can prove in a purely topological way the following
Novikov gluing formula (Hirsch ~54~ ) :

Then, using exactly the same reasoning as in the previous section, one
shows that for two different diffeomorphisms 0 and o

By the Hirzebruch signature formula this implies
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which is the formula we wanted to prove.

Following a suggestion of W. Luck, we shall now give a more algebraic
proof of this equality. This should be considered as a pr6lude to the
arguments of Leichtnam-Luck-Kreck [73] that we shall recall in Section 11
below. Since every sub vector space of a real vector space is a direct

summand, one can construct a chain homotopy equivalence u between the
cellular chain complex of R-vector spaces C*(8M) and a chain complex
D* of finite dimensional R-vector spaces whose m-differential 

vanishes. With these notations, set Di = Di for 0  i ~ m - 1 and
Di - 0 for i &#x3E; m. One then gets a so-called Poincar6 pair j* : D* - D*
whose boundary is D*. By glueing j* : D~ 2013~ D* and the Poincar6 pair
i* : C* (o~M) --~ C* (M) along their boundaries with the help of u one gets
a true algebraic Poincar6 complex denoted C* (M Uu D). A reference for
these concepts is Ranicki [109], p. 18. Intuitively an algebraic Poincar6 pair
j* : D* --4 D* is the algebraic analogue of the injection i : 9M --~ M where
M is an oriented manifold with boundary. One can check that the signature
sign(M Uu D) of the non degenerate quadratic form of C* (M Uu D) does
not depend on the choice of u and D. Moreover one can prove that the
signature sign(D*, D*) of the algebraic Poincar6 pair j* : D* - D* is zero.

Proof. - Of course the second equality is a consequence of the first
one. The algebraic Poincar6 complex defined by the cellular chain com-
plex C* (M N- ) is (algebraically) cobordant to the following algebraic
Poincar6 complex:

Hence the signature of M Uo N- is the sum of the ones of C* (M U~ D) and

Since the signature of (D*, D*) is zero one gets that sign M N- -

sign M - sign N which proves the Lemma. 0
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3.3. The spectral-flow-proof.

Recall that we have set

Fix metrics g~ on Xw and gp on We shall assume that these metrics

are of product type near the embedded hypersurface F := ~M. We shall
prove, analytically and without making use of the Atiyah-Patodi-Singer
index formula, that

By the Atiyah-Singer index theorem for the signature operator on closed
manifolds, this will suffice in order to establish  [Xol &#x3E;=

[Xo] &#x3E;, i.e. Proposition 3.1. The equality of the two indeces will
be obtained exploiting two fundamental properties of the Atiyah-Patodi-
Singer index: the variational formula and the gluing formula.

3.3.1. The variational formula for the APS-index. In contrast

with the closed case, the APS-index is not stable under perturbations. In
Subsection 2.4 we have defined the APS-boundary value problem for any
generalized Dirac operator on an even dimensional manifold with boundary,
M, endowed with a metric g which is of product type near the boundary. As-
sume now that is a smoothly varying family of such operators.
As an important example we could consider a family of metrics 
on M and the associated family of signature operators Go-

ing back to the general case, consider the family of operators induced on the
boundary let II,(t) the corresponding spectral projection
associated to the non-negative eigenvalues; then the following variational
formula for the APS-indeces holds:

(3.7) 
where on the right hand side the spectral flow of the 1-parameter family
of self-adjoint operators ~DaM (t) ~ appears; this is the net number of

eigenvalues changing sign as t varies from 0 to 1 ([7], [92]). Formula
(3.7) follows from the APS-index formula, see [7]. It can also be proved
analytically, without making use of the APS-index formula. See for example
Dai-Zhang [33].

3.3.2. Important remark. If N is odd dimensional and

is a one-parameter family of odd signature operators
parametrized by a path of metrics then
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In fact, the kernel of the odd signature operator is equal to the space of
harmonic forms on N; from the Hodge theorem we know that such a vector
space is independent of the metric we choose; thus there are not eigenvalues
changing sign and the spectral flow is zero.

3.3.3. The gluing formula. We start with a simplified situation:
X is a closed compact manifold which is the union of two manifolds with

boundary. Thus there exists an embedded hypersurface F which separates
M into two connected components and such that

We assume that the metric g is of product type near the hypersurface F,
i.e. near the boundaries of M+ and M-. Let Dx be a Dirac-type operator
on X; then we obtain in a natural way two Dirac operators on M+ and
M_ . The following gluing formula holds:

The discrepancy in the spectral projections come from the orientation of
the normals to the two boundaries (if one is inward pointing, then the other
is outward pointing). 3

Formula (3.9) can be proved directly, in a purely analytical fashion,
see Bunke [23], Leichtnam-Piazza [79]. Of course it is also a consequence
of the APS-index theorem.

3.3.4. Proof of formula (3.6). The gluing formula (3.9) can be
generalized to our more complicated situation, where Xo is a closed

manifold obtained by gluing two manifolds with boundary through a
diffeomorphism. Using this gluing formula on Xo (with metric and

on Xp (with metric g~), applying then the variational formula for the APS
index on M with respect to a path a metrics connecting g-ø I M to 
and then doing the same on N (with a path of metrics connecting 
and one proves that = 

The spectral flow appearing in this formula is associated to a S1-family
of odd signature operators acting on the fibers of the mapping torus
F - M(~-1~) ~ S’ and parametrized by a family of metrics. As
remarked in 3.3.2 this spectral flow is zero because of the cohomological

3 Notice that 1 - II;;: is not exactly the APS-projection associated to the non-negative

eigenvalues of DaM_; to be precise 1 - = the projection onto the positive

eigenvalues of DaM_
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significance of the zero eigenvalue for the signature operator. References
for this material are, for example, the book [19] and the survey Mazzeo-
Piazza [91]. Summarizing, the equality of = has been

obtained through the following two equalities 
~°

Remark. - It should be remarked that in this third proof we have
not used the APS-index formula; only the analytic properties of the APS
boundary value problem were employed. This will be important later, when
we shall consider higher signatures.

4. Summary.

Let us summarize what we have seen so far. Let (M, g) be an oriented
Riemannian manifold of dimension 4k and let be the associated

(M,g)
signature operator. 

. If M is closed then fm is an oriented homotopy invariant.
In fact

r

with and

sign(M) = signature of M.

. If M has a boundary, 0, then we can define a correction term

r~(D~~M,9a) ) such that

is an oriented homotopy invariant of the pair (M, aM) . In fact

be two cut-and-paste
equivalent closed manifolds. Then
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5. Novikov higher signatures.

5.1. Galois coverings and classifying maps.

Let r be a discrete finitely presented group. Let r - M - M be a
Galois r-covering (the term normal is also in common usage). For example
r = 7Ti(M) and M= universal covering of M. As a particular example to
keep in mind, let Eg be a closed connected Riemann surface of genus g &#x3E; 2
and let r9 be its fundamental group, then H/f 9 where H denotes
the Poincar6 upper halfplane E C, / Im z &#x3E; 0 ~ ) . The projection map
p : H/f 9 defines the universal covering of *

From now on all our h-coverings will be Galois. Recall that F-

coverings are, in particular, principal F-bundles. Thus, thanks to the
classification theorem for principal bundles, see Lawson-Michelson [71], we
know that there exist topological spaces Br, Er, with EF contractible,
and a r-covering Er - Bh such that the following statement holds:

there is a natural bijection between the set of isomorphism classes of
h-coverings on M and the set of homotopy classes of continuous maps
r : M - Br.

The bijection is realized by the map that associates to (M, r : M -
Bh) the r-covering r* Ef. The space BF is uniquely defined up to homotopy
equivalences and is called the classifying space of F. The map r is called
the classifying map. In the example above one has 7~, Eg
and r = identity. As a different example: with

covering map:

From now on we shall identify a F-covering with the corresponding pair
(M, r : Nr -~ 

DEFINITION 5.1. - Let M and M’ be closed oriented manifolds.

We shall say that two r-coverings

are oriented homotopy equivalent if there exists an oriented homotopy
equivalence h : Me M such that r r’, where - means homotopic.

DEFINITION 5.2. - Let M and N be two oriented compact man-

ifolds with boundary and let cjJ,1/J : 8M - aN be orientation preserving
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diffeomorphisms. Let r : M U4&#x3E; N- ~ BF and s : M N- --+ BF be

two reference maps. We say that they define cut-and-paste equivalent r-
coverings and 8 1 N holds, where - means homotopic.

Geometrically this means that r*Er --~ M U4&#x3E; N- and r*Er
M Up N- give rise to isomorphic bundles when restricted to M and N
respectively.

5.2. The definition of higher signatures.

Let r ~ M ~ M be a T-covering of a closed oriented manifold and
let r : M - BF be a classifying map for such a covering. Consider the
cohomology of BF with real coefficients H* (Bf, R). It can be proved that
there is a natural isomorphism

H’ (i R)
where on the right hand side we have the algebraic cohomology of the
group h. We recall that is by definition the graded homology
group associated to the complex ~C* (r), d} whose p-cochains are functions
c : rP+1 ~ R satisfying the invariance condition

and with coboundary given by the formula

Since we deal with real coefficients, the above complex can be replaced by
the subcomplex of antisymmetric cochains:

Let us fix a class

and consider

This real number is called the Novikov higher signature associated to

[c] E H* (Br, R) and the classifying map r. Using the de Rham isomorphism
we can equivalently write
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If dim H = 41~ and [c] = 1 E then

and we reobtain the lower signature.

Remark. - We have defined the Hirzebruch L-class as the de Rham

class of the L-form L(M, In fact, using a more topological approach
to characteristic classes, one can define the L-class in H* (M, Q); con-
sequently the higher signatures sign(M, r; [c]) can be defined for each

[c] E H*(Bf,Q).
For motivation and historical remarks concerning Novikov higher

signatures the reader is referred to the survey by Ferry-Ranicki-Rosenberg
[37].

6. Three fundamental questions.

Having defined the higher signatures

and keeping in mind the properties of the lower signature, we can ask the
following three fundamental questions.

Question 1. Are the higher signatures homotopy invariant?

Question 2. Are the higher signatures cut-and-paste invariant?

Question 3. If 0, can we define higher signatures and prove
their homotopy invariance ? Of course we want these higher signatures on
a manifold with boundary M to generalize the lower signature

which is indeed a homotopy invariant by Theorem 2.8.

We anticipate our answers: Question 1 is still open and is known as
the Novikov conjecture. It has been settled in the affirmative for many
classes of groups. For instance, the following groups satisfy the Novikov
conjecture: virtually nilpotent groups and more generally amenable groups,
any discrete subgroup of GLn (F) where F is a field of characteristic zero,
Artin’s braid groups Bn, one-relator groups, the discrete subgroups of
Lie groups with finitely many path components, for a complete
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Riemanniann manifold with non-positive sectional curvature. The Novikov
conjecture has also been proved for hyperbolic groups and, more generally,
for groups acting properly on bolic spaces (see the recent work of Kasparov
and Skandalis). A few relevant references are Mishchenko [98], Kasparov
[63], [64], [65], Weinberger [121], Connes-Moscovici [29], Connes-Gromov-
Moscovici [30], [31], Ferry-Ranicki-Rosenberg [37], Gromov [44], Higson-
Kasparov [49],Kasparov-Skandalis [67] (see also Kasparov-Skandalis [66],
Solov’ev [115]), Guentner-Higson-Weinberger [46]. For related material see
Lafforgue [69], Cuntz [32], Mathai [90], Lfck-Reich [88], Schick [113].

The answer to Question 2 is negative: the higher signatures are
not cut-and-paste invariants (we shall present a counterexample below).
However, one can give sufficient conditions on the separating hypersurface
F and on the group F ensuring that the higher signatures are indeed cut-
and-paste invariant.

Finally, under suitable assumption on and on the group F

one can define higher signatures on a manifold with boundary M equipped
with a classifying map r : M - BF and prove their homotopy invariance.

Relevant references for the solution to the last 2 questions will be

given along the way.

7. The Novikov conjecture on closed manifolds:
the K-theory approach.

In this section we shall describe one of the approaches that have been
developed in order to attack, and sometime solve, the Novikov conjecture.
We begin by introducing important mathematical objects associated to M,

7.1. The reduced group C*-algebra 

We consider the group ring It can be identified with the complex-
valued functions on F of compact support. Any element f E CF acts on

~2 (IF) by left convolution. The action is bounded in the f2 operator norm
11 - ’ I I.e2 (r)-~.e2 (r) . The reduced group C*-algebra, denoted C;f, is defined as
the completion of CT, in B (f2 (F)). Let us give an example: if r - Zk then
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using Fourier transform one can prove that there is a natural isomorphism
of C* algebras:

with Tk = U(1)) the dual group associated to ~~ (a k-dimensional
torus) .

7.2. K-Theory.

Let A be a unital C*-algebra, such as We recall that Ko(A) is
defined as the group generated by the stable isomorphism classes of finitely
generated projective left A-modules; more precisely such a module is the
range of a projection p in a matrix algebra Mn(A) and one identifies two
pairs of projections (p, q) E and (p’, q’) E if for suitable

k, k’ e N,

P EB q’ 0 is conjugate to o e Ok’ in 

One then denotes by [p - q] (=[p’ - q’]) the class of (p, q); similarly, if

E and F are finitely generated projective left A-modules, then we denote
by [E - F] the associated class in Ko(A). Ko(A) is an additive group.

When A is a non unital C* -algebra one introduces the unital C* -algebra
A = A o C obtained by adding the unit element 0 (B 1 to A; one considers
the morphism c : A - C defined by E(a ® A) = A. One then defines Ko (A)
to be equal to the kernel of the map E* : Ko (C) induced by
E. Observe that Ko(C) = Z. We also define to be

equal to Ko (A 0 Co(R)) where A 0 is the suspension of A. For
instance ~i(C) == = 0. Alternatively, Kl (A) can be identified
with the set of connected components of GLCX)(A). We recall that for any
compact Hausdorff space M, the K-theory group K° (M) is defined as the
set of formal differences of isomorphism classes of complex vector bundles
over M. Then Swann’s theorem states that is isomorphic to

Thus, from the previous sub-section one gets an isomorphism:
°

7.3. The index class of the signature operator in K*(C,*F).

7.3.1. C;f-linear operators. Let (M, g) be a closed, compact and
oriented Riemannian manifold. Let 7r : M -~ M be a Galois h-covering.
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Let r : M - BF be a classifying map for this covering. We consider a
Hermitian Clifford module E ---&#x3E; M, endowed with a Clifford connection
V , and let D be the associated Dirac-type operator acting on C°° (M, E).
For example we could consider the signature operator associated to g and
our choice of orientation. Notice that we can lift the operator D to a F-
invariant differential operator D on M; D acts on the section of the F-
equivariant bundle E := Consider now The group h acts in a

natural way on by right translation. It also act on M (on the left) by
deck transformations: we can therefore consider the associated bundle

which is a vector bundle with typical fiber c;r. We shall be interested in the
space of sections C°° (M, E0V). If rank E = N and s E C°° (M, E0V), then
in a trivializing neighborhood U we can identify slu with a N-tuple of 
valued functions (s i ... , This shows that C°°(M, E 0 V) is in a natural
way a left C*r h-module. Moreover, using the Hermitian metric h(.,.) on E
we can define a Cr h-valued inner product  ., . &#x3E; : if s, t C C§° ( U, (E0V)lu)
then

The general case is obtained by using a partition of unity. C°° (M, E Q9
V) equipped with the above C;r-valued inner product is a pre-Hilbert
CT r-module, in the sense that it satisfies the following properties: Va E

c;r, Vs, t, u E C°° (llil, E Q9 V) :

The completion of C°° (M, E 0 V) with respect to the norm

is denoted by Lb;r(M,E 0V); it is a Hilbert 
The product bundle x M - M is endowed with the trivial

flat connection. It induces a (non trivial) flat connection 17V on the

CT r-bundle V. Then the bundle E V --&#x3E; M is endowed with the
connection We denote by the associated twisted

Dirac type operator. Directly from the definition we see that:

A good reference for seeing the details of this approach is Schick [114].
We also remark that it is possible to introduce Sobolev C*rT-modules
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extends to a bounded C*r r-linear operator

If M is even dimensional, then E is Z2-graded, thus

7.3.2. The index class in I~* (CT h) . From (7.1) we infer that

KerD~ ~ and are both C~ r-modules. In general, the modules
and are not finitely generated and projective so

they cannot be used directly to define the index class Ind(D+,,,) E

However this is true up to a

smoothing perturbation R; one defines the index class as

(and the definition does not depend on the choice of R). Let us see the
details.

The Mishchenko-Fomenko pseudodifferential calculus. One
can define a space of C;r-linear differential operators Q9Cr
V, E Q9 V); these are simply operators locally given by a N x N-matrix

N = rkE, with

In a very natural way we can give the notion of ellipticity in Diffô*r(M; E ®C,-
V, E 0 V). From the definitions, we discover first of all that E

E 0 V, E ® V); moreover the ellipticity of D implies that 
is elliptic in 0 V, E 0 V) . Mishchenko and Fomenko have
developed a pseudodifferential calculus for C*r-linear operators

Using this calculus one can prove that given an elliptic operator P E
E ® V), it is possible to find an inverse ! 

V, E ® V) modulo elements in Notice that the

smoothing operators in the Mishchenko-Fomenko calculus are simply the

4 This is similar to the problem one encounters in defining the index class of a family
JF :== of Fredholm operators parametrized by a space T : the kernel-bundle and
the cokernel-bundle do not in general vary continuously.
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integral operators with a Schwartz kernel on M x M locally given by a
smooth function with values in 

Let in particular M be even dimensional and let E = E+ EB E- be the

Z2-graded bundle appearing in the definition of our Dirac operator. The
operator

is elliptic and there exists therefore a parametrix
V, E+ 0 V) such that

with R± E E± Q9 V, E± Q9 V). This part of the theory runs quiteCr-
parallel to the usual case, when the C*-algebra is equal to C; the main
differences arise in the functional analytic consequences of (7.2). The point
is that doing functional analysis on a Hilbert A-module, with A a C*-

algebra, is a more delicate matter than doing functional analysis on a
Hilbert space (see Wegge-Olsen [120] and Higson [47] for more on this

delicate point).
The Mishchenko-Fomenko decomposition theorem. On a

Hilbert A-module there exists a natural notion of A-compact operator:
using (7.2), elliptic regularity and the fact that elements in are CT (r)-
compact on Lcr, one can prove a decomposition of the space of sections
of E ® V with respect to D~~,~,), i.e.

with Z+ and Z finitely generated projective C;r-modules. Notice that the
second decomposition is not, a priori, orthogonal. However, induces

an isomorphism (in the Frechet topology) between I-L and )(-T-L
Intuitively Z+ should be thought of as the kernel of and I- as the

cokernel.

The index class. The index class of D+,,)’ a la Mishchenko-

Fomenko, is precisely given by 

Although the decomposition (7.3) is not unique, the index class is uniquely
defined in The main reference for this material is the original
article of Mishchenko and Fomenko [100]; see also [74], Appendix A.
Working a little bit more one can show that the orthogonal projection
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H+ onto 1+ and the projection Tri- onto I- along D+ (It) are elements in

is a smoothing perturbation of with the property that its kernel and
cokernel are finitely generated and projective.

Summarizing: there exists a smoothing perturbation R such

that and are finitely generated projective
C*r T-modules; the index class can be defined as

and it is not difficult to prove that it does not depend on the choice of
R E Cr* r

If M is odd dimensional, then the Clifford module E will be ungraded;
we obtain in this case an index class C We shall not

give the details here.

7.3.3. The example r = Zk . Let N be a closed oriented manifold
with 7rl (N) == Let r be the classifying map. In this case the higher
index class Ind (Dsign )) has, thanks to Lustzig [89], a geometric description(N,r) l
Details for the material that follows can be found in [89] and Lott [83]. As
already remarked the space is a k-dimensional torus; more precisely,
it is the dual torus (T ~ ) * to T k - Zk = Using the duality
between the two tori it is easy to see that on the product (T~ ) * x T k
there is a canonical Hermitian line bundle H with a canonical Hermitian

connection The bundle H is flat when restricted to any fibre of the

projection (T ~ ) * x T~. Using the map r x id : N x (T ~ ) * x T*’
we obtain a line bundle F on N x rk with a natural Hermitian (pulled-
back) connection In this way we have obtained a fibration of closed

manifolds 0 : N x T ~ --~ rk and a Hermitian line bundle F over the total
space with a flat structure in the fibre directions. Let 0 C rk and let Fe be
the restriction of F to N x f 01. Since Fe is flat, the de Rham differential
can be extended to act on A* (M) Q9 Fe; we obtain a twisted de Rham
differential de . Let be the corresponding twisted signature operator
on N. As 9 varies in T~, we obtain a smoothly varying family of twisted
signature operators. Thus, according to Atiyah and Singer [8], we obtain an
index class E with * = dimN. It can be proved
that
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corresponds under the isomorphisms .

7.4. The symmetric signature of Mishchenko.

Let A be an involutive algebra and let us introduce the Witt

group of non singular Hermitian forms on A: it classifies Hermitian forms
Q on finitely generated left projective modules on A. Given E a finitely
generated left projective module over A, a Hermitian form Q on E is a
sesquilinear form E x E - A such that:

The form Q is said to be invertible when the map from E to HomA (E, A)
given by g - Q(., ç) is invertible. The Witt group L° (A) is the group

generated by the isomorphism classes of invertible Hermitian forms with
the relations: When A is a

C* -algebra with unit then each finitely generated left projective module
over A admits an invertible Hermitian form Q satisfying the positivity
condition Q(~, ~) &#x3E; 0 for any ~ E E. (Recall that an element x of the
C* -algebra A is positive if and only if it is of the form x - yy*, or
equivalently, x is self-adjoint and its spectrum lies in [0, +00[ ). Moreover,
on E all such positive Hermitian forms are pairwise isomorphic so that
there is a well defined map Ko (A) -* sending E to (E, Q) with Q
an invertible positive Hermitian form on E; it turns out that this map is
an isomorphism.

Let M be an oriented 2n-dimensional manifold and let r : M ~

Br be a (continuous) reference map. We are going to recall, following
Mishchenko [98], [99] (see also Kasparov [65], [63]), the construction of
the Mishchenko symmetric signature ucr (M, r) E 

Denote by M - M the associated Galois r-covering. Take a (suit-
ably nice) triangulation of M and pull it back to M to a r-invariant
triangulation of M. Let (C* , 8* ) and (C*, 6*) denote the associated simpli-
cial chain complex and cochain complex: 6j : cj -7 Cj,
for 0 ~ j  2n. The C3 , Cj are finitely generated free left 
There is a chain map gj : C2n- j , 0  j  2n, defining Poincar6 du-
ality, which satisfies i and induces a chain homotopy
equivalence. It can be arranged that ~* = (-1)3£2n-j where £§ denotes
the adjoint of the left map çj. We can add a (~ ~h~ ) ~, for a
suitable k E N, to both C2n- ’ and Ci to make 62n-1 : 1 C2n-1 __~ C2n
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surjective. Then we add ((C[r])~)* to both Cl and C2n-1 in order to pre-
serve Poincar6 duality and modify accordingly 6o and Ô2n. Now we may
split off ~o and ~2,, and repeat this algebraic surgery process so as to come
down to a complex concentrated in middle dimension: £n : C2n _--+ C2n,
(Zn~n)* - inçn. Since in ~n defines a non degenerate Hermitian form one
gets an element, denoted r), of Mishchenko has shown

that r) depends only on the oriented homotopy type of (M, r).
Consider now the natural homomorphism in-

duced by the inclusion Cur - We compose it with the inverse isomor-

phism and get a well defined homomorphism

Let

is the C,*]F-valued Mishchenko symmetric signature. It is a homo-
topy invariant of the pair (M, r : M --+ Br).

7.5. Homotopy invariance of the index class.

The following theorem will play a crucial role both in the treatment
of the Novikov conjecture and of the cut-and-paste invariance of higher
signatures. It is due to Mishchenko and Kasparov, [99], [63]:

THEOREM 7.5. - Let (M, r : M - Bh) be an oriented manifold
with classifying map r. Then the index class E K*(C;r),
* = dim M, is equal to a(M, r), the C,*]F-valued Mishchenko symmetric
signature:

As a corollary we then get the following fundamental information:

COROLLARY 7.7. - The index class Ind

oriented homotopy invariant.

Remark. - It is possible to give a purely analytic proof of Corollary
7.7. This important result is due to Hilsum and Skandalis [53]. See also the
work of Kaminker-Miller [60].
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Remark. - When F == Zk, Lusztig was the first to establish the

homotopy invariance of The proof of Kaminker-
Miller [60] cited above is an extension of Lusztig’s proof to the noncommu-
tative context. For a very direct and short proof of the homotopy invariance
of the signature index class see the recent paper [106].

Important remark. Although Theorem 7.5 and Corollary 7.7 are
extremely interesting results, they still do not settle in anyway the Novikov
conjecture. In fact, these results should be viewed as the higher analogue of
only one out of the two steps we used in order to prove that fM L(M) is an
homotopy invariant. This step is, more precisely, the homotopy invariance
of the signature and its equality with the index. What we are still missing
in the present higher case is the first step, the one relating fm L(M) to the
index. The problem we face now is therefore quite clear:

Fundamental Problem: how can one use the homotopy invariance
of the index class Ind in order to prove the homotopy invariance
of the higher signatures

Alternatively:

how can we connect the index class and its homotopy invariance to the

higher signatures ?

We shall present below two answers to this question. The first one, due
to Kasparov, employs the K-homology of BT’, K* (BT ), and a natural map
J1 : K*(Br) - K*(C;r); the second one, due to Connes and Moscovici,
employs cyclic cohomology.

7.6. The assembly map and the Strong Novikov Conjecture.

We are considering a closed oriented manifold M and a classifying
map r : M 2013~ Be. Let L(M) n [M] be the Poincar6 dual to L(M) and
consider r* (L(M) ~1 [M]) E One can check, using some basic

algebraic topology, that

Thus the homotopy invariance of the real homology class r* (L(M) n [MJ)
implies the homotopy invariance of all the higher signatures

It is well known that K-theory is a generalized cohomology theory; it
thus admits a dual theory, K-homology, and there is a homological Chern
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character map Ch : K* ( , Z) - H* ( , Z) which is an isomorphism modulo
torsion. Summarizing: the K-homology of Br is well defined and there is
an isomorphism Ch : K* (Br) @z R. Thus we are led to
consider the following K-homology class

Clearly: if this class is homotopy invariant, then the Novikov conjecture is
true.

In order to understand why we wish to pass from homology to K-

homology we shall simply mention that besides the abstract definition

(a dual theory), there are other characterizations of K-homology, directly
connected to elliptic operators. Historically, Atiyah was the first to realize
that cycles in K* (X ) should be thought of as "abstract elliptic operators"
[1]. His ideas were further pursued by Kasparov [62] and Brown-Douglas-
Fillmore [21]. At the same time, Baum and Douglas [12] proposed a purely
topological definition of K-homology and showed that it was compatible
with the analytic one of Atiyah. We shall present this topological definition,
since it is the easiest to explain and leads directly to the map A : K * (Br) -
I~* (C$r) that was mentioned at the end of the previous section. We shall
concentrate on the even dimensional case and pretend that Bh is compact
(the general case is obtained by taking an inductive limit).

Cycles in the (topological) K-homology groups Ko (X) of a compact
topological Hausdorff space X are given by triples (M, r : M --~ X, E)
where M is an even dimensional oriented manifold, r : M -~ X is

continuous, and E is a Z2-graded vector bundle over M which can be
given the structure of graded Clifford module. 5 One then introduces
an equivalence relation on this triples given by bordism, direct sum and
vector bundle modification. We do not enter into the details here. The

quotient turns out to be the Ko-homology group of X. For example
[M, id, with As ign All (M) o All (M) the Clifford module
defining the signature operator, is a class in Ko(M). Similarly, if r : Me
Br is a classifying map, then [M, r : At 2013~ Bh, defines an element

in Ko(Br).
Let now

define a map

5 The original definition of Baum-Douglas was slightly different: it assumed M to be

spine but left E arbitrary; Keswani has proved, see [68], that the two definitions are
equivalent.
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by sending [M,r : M ~ Br, E+ o E-~ ] to the index class, in 
associated to the C*r-linear Dirac operator associated to the Clifford
module E and the classifying map r : M ---+ Br. Thus if D E is the Dirac
operator associated to E on M and if, as usual, we denote by B the

operator DE twisted by the flat bundle V = r* Er x r then the map

(7.8) is given by

As a fundamental example we have:

A similar map, from to Kl(C;r), can be defined in the odd
case, considering odd dimensional manifolds and ungraded Clifford modules
in the definition of the cycles of We shall denote by the map
induced from K*(Br) 0z R to R. The map /-t is called the

assembly map; it is also referred to as the Kasparov map. If r is torsion
free then it also known as the Baum-Connes map. One can check, unwinding
the definitions, that

Hence

We thus arrive at the following fundamental conclusion:

THEOREM 7.10. - If the map AR is injective then the Novikov

conjecture is true.

Proof. If (M, r : M - Bh) and (N, s : N ~ Bh) are homotopy
equivalent, then by Corollary 7.7 we have Ind = Ind Using
(7.9), the injectivity of AR and the bijectivity of Ch we get r* (L(M) n ~M~ ) _
s*(L(N) n [N]), which implies the equality of all the higher signatures. 0

For later use we notice that the conclusion we can draw is slightly
more general:

PROPOSITION 7.11. - injective then the equality of the
index classes Ind in K* (C;r) Q9z R implies the equality(M, r) 

- 

(N,s) r

of all the higher signatures:
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This remark will be important in treating the cut-and-paste problem
for higher signatures. Of course, since Ind ;
valued symmetric signature of Mishchenko), we can also state the following

PROPOSITION 7.12. - If is injective, then the equality of the
C,*]F-valued symmetric signatures, a(M, r) = u(N, s), implies the equality
of all the higher signatures.

The injectivity of (in fact, of J-LQ) is known as the Strong Novikov
Conjecture (- SNC); it is still open. Most of the groups for which the

Novikov conjecture has been verified, satisfy the SNC as well.

We refer to the nice survey of Kasparov [65] for seeing, informally,
the Dirac-dual Dirac method for constructing a left inverse of PR. See also

[64].
For the connection between the Strong Novikov Conjecture and the

existence of metrics of positive scalar curvature (an important topic that
will be left out of the present survey) we refer, for example, to Rosenberg
[110], [111], [112], Stolz [117], Joachim-Schick [57], [113].

7.7. The Baum-Connes conjecture.

The Strong Novikov Conjecture states that the rational assembly map

is injective. We have just seen that the Strong Novikov conjecture implies
the Novikov conjecture.

If the discrete group h is torsion free then the Baum-Connes conjec-
ture states that the assembly map p : is bijective.

When the group r has torsion then, in general, the map p is not an
isomorphism. For instance, if then - whereas

so that p oz idQ (and thus /-t) cannot be surjective.
In the general non-torsion-free case, Baum, Connes and Higson have

introduced the space Er, classifying the proper actions of r. Such a space
ET is uniquely defined up to T’-equivariant homotopy (see [11]). Baum,
Connes and Higson have then constructed an assembly map:
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The Baum-Connes conjecture states that u is an isomorphism. Notice that
there is a natural map 7 : Ear - EF which induces a map

The map p is given by p = j~ o a* . One can prove [11], Section 7 that the
injectivity of ~ implies the rational injectivity of p. In other words, the
Baum-Connes conjecture implies the Strong Novikov Conjecture.

For more on the Baum-Connes conjecture we also refer the reader to

Valette [119], Lafforgue [69], Lfck-Reich [88], Schick [113].

8. The cyclic-cohomology approach
to the Novikov conjecture.

Let M 2 Bh be a closed oriented manifold with classifying map r.
In the previous subsection we have explained one way to link the index
class Ind (and its homotopy invariance), to the higher
signatures  L(M) U r*[c], [M] &#x3E;, [c] E This link is provided
by the assembly K* (Br) ---+ ~(C~T). In this subsection we shall
explain a different approach for establishing such a link; this method, due
to Connes and Moscovici [29], will use cyclic cohomology. Our presentation
will heavily employ results by Lott [82]. In order to understand the main
ideas, we begin by the abelian case, r = Z , thus explaining the seminal
work of Lusztig.

8.1. The abelian case: family index theory.

Let us assume h = In subsection 8.1 we recalled the construction

of the index class Ind (I i in terms of the index bundle

associated to the Lusztig’s family T~ = We

briefly denote this family The index bundle lives in and

we can therefore consider its Chern character E 

An application of the Atiyah-Singer family index theorem gives

with w an explicit closed form in x T~). Let now [c] E =

starting from [c], Lusztig defines in a natural
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Consequently

Lusztig settled the Novikov conjecture in the abelian case by using the last
formula and showing furthermore that the index bundle is a

homotopy invariant.

8.2. Bismut’s proof of the family index theorem.

It is clear from what has been just explained that Lusztig’s treatment
of the Novikov conjecture is heavily based on the Atiyah-Singer family
index formula. Besides the original K-theoretic proof of Atiyah and Singer,
see [8], there is a heat kernel proof of the family index theorem, due to
Bismut [14]. Bismut’s theorem applies to any family of Dirac operators
along the fibers of a fiber bundle X - B; notice that in the present case
this fiber bundle is nothing but M x T~ 2013~T~. We briefly explain Bismut’s
approach, as we shall need it later.

8.2.1. The superconnection heat-kernel. Consider the bundle
on T k whose fiber So at 0 E T~ is ® Fe ) . The Levi-Civita
connection on M x T~ and the connection on the vector bundle F on

M x T~ (see subsection 7.3.3) define together a connection on E:

(8.3)
The sum

is called a superconnection; its curvature, A2, turns out to be a Tk -family
of differential operators on M with coefficients in Q*(T k) . Thus exp(-A 2)
is a Tk-family fK(0)1,9CTk of smoothing operators on M with coefficients
differential forms on T~ .

Remark. - The concept of superconnection is due to D. Quillen
[107] who moreover suggested that it could be used in a heat kernel proof
of the family index theorem. Quillen’s heuristic arguments were rigorously
developed by Bismut in [14].

8.2.2. The fiber-supertrace. Let A*(T k) the Grassmann algebra
of the cotangent space to T~ in 8. One can see more precisely that the
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Schwartz kernel of restricts to the diagonal
a section of the bundles 

*

denote the natural supertrace on Endi ; we can extend this

; it act on the first

factor as the identity. Thus

We conclude that if denotes the family of Schwartz kernels
associated to exp(-A ) , then

and as 0 varies in Tk we obtain a differential form. Summarizing we can

give the following

DEFINITION 8.4. - The functional analytic fiber-supertrace
STR(exp(-A 2)) is the differential form on Tk defined by the equality

8.2.3. Bismut’s theorem. Consider the so-called rescaled supercon-
nection + B7£ for s &#x3E; 0. Bismut’s theorem, in this special
case, states that

e for each s &#x3E; 0 the differential form is closed in

,

e for each s &#x3E; 0 it represents the Chern character of the index bundle:

o the short-time limit can be computed, giving

The notion of superconnection can be given for any family of Dirac

operators {Db}beB acting on the sections of a vertical Clifford module E
on a non-trivial fiber bundles Z 2013~ M 1 B. 6

Besides the original article of Bismut, [14], the reader is also referred
to [13], Chapter 9 and 10.

6 It is an operator A : with «

which is odd with respect to the total grading defined by E and 11* (B), satisfies Leibnitz
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It is clear that if we wish to generalize Lustzig’s approach to a
noncommutative group F then we need to bring to the noncommutative
context the notion of Chern character, defined on ~(C~T), and prove a
noncommutative family index theorem. In order to do so we need the notion
of cyclic (co) homology.

8.3. Cyclic (co)homology.

Let A be a unital k-algebra over k = R or k = C. The cyclic
cohomology groups HC* (A) Connes [27] ( see also Tsygan [118]) are the
cohomology groups of the complex (C~ , b) where C~ denotes the space of
(n + 1)-linear functionals cp on A satisfying the condition:

and where b is the Hochschild coboundary map given by

Set C.0 - C~ and, for any n E N*, denote by C~ the sub vector space of C~
formed by the (n + 1)-linear functionals cp such that a’, ..., an) = 0
if a2 = 1 for some i E ~1, ... , (C~, b) is then a subcomplex of (C~, b)
whose cohomology groups are called the reduced cyclic cohomology groups

Of particular importance to us will be the cyclic cohomoly group
HC*(Cr). Let c E C) be a group cocycle. Connes has associated to c

rule and can be written as

The first two results in Bismut’s theorem are true for any superconnection; the short-
time limit, on the other hand, only holds for a specific superconnection, nowadays called
the Bismut’s superconnection; its rescaled version can be written as

with an additional term involving the curvature of the fiber bundle Z - M ~ B.
In particular, if the fiber bundle is trivial, as in the Lustzig’s family, this additional term
is zero.
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a cyclic cocycle Tc and thus a cyclic class [-r
then set

1, then, using the fact that c is antisymmetric, one checks that Tc is
a reduced cyclic cocycle.

We can also introduce cyclic homology. Denote by the tensor

product over k of n + 1 copies of A and consider the endomorphism t of
defined by:

Consider also the map b : ~ defined by:

Then set . The cyclic homology groups HC,, (A) are then
the homology groups of the complex (C,~,l (A), b). Next, denote by the

quotient of Cf (A) by the sub k-module generated by the tensor products
ao 0 al 0 ...0 an where ai = 0 for some i E f 1,..., Then the reduced

cyclic homology groups HC* (A) are defined to be the homology groups of
the complex b).

8.4. Noncommutative de Rham homology
and the Chern character.

We follow Karoubi [59]. Recall that is R or C. Let A be a unital
k-algebra and consider a graded algebra

with Qo (A) = A, endowed with a k-linear derivation of degree 1, d = dj :
satisfying d2 = 0 and

-module generated by the graded commu-
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It is clear that the derivation d induces a k-linear differential, still denoted
d, on the graded k-vector space we then denote by H* (A) the
homology of this quotient complex and call it the non commutative de

Rham homology of SZ* (A) .
Now let E be a finitely generated projective left A-module, a

connection D on E is a k-linear homomorphism

satisfying Leibniz’s rule

Set One then checks that D2 extends a left

linear 03A9even(A)-endomorphism of 0A E sending Q2k(A) 0A E
into Q2k+2 (A) 0A E for each k ~ N. Since E is assumed to be finitely
generated and projective, there is a natural trace map:

where the last - is the obvious one. The Chern character is then defined

by

It is indeed a theorem (see Section 1 of [59]) that TRe-D2 defines a cycle
in H even (A) which does not depend on the choice of D.

8.5. Cyclic (co)homology
and noncommutative de Rham homology.

We recall that Connes has constructed an operator B from HC* (A)
(resp. HC* (A) ) to the Hochschild homology group H*+1 (A, A) where B is a
non commutative analogue of the de Rham exterior derivative. In Section 2
of [59] the following is proved. For * &#x3E; 0, H* (A) is isomorphic to the kernel
of B acting on HC* (A), while is isomorphic to the kernel of B
acting on We shall not give the details here but only retain the
information that, for * &#x3E; 0, there is a pairing between noncommutative de
Rham homology H* (A) and the reduced cyclic cohomology group HC* (A).
For * = 0 there is is a pairing between noncommutative de Rham homology
Ho (A) and cyclic cohomology HC° (A) .
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8.6. Topological cyclic (co) homology.

Now let A be a unital Frechet locally convex k-algebra; i.e. a Frechet
locally convex topological vector space for which the product is continuous.
The topological cyclic cohomology groups HCn (A) are defined as above but
by considering only continuous linear (n + 1 ) -linear functionals. Similarly,
the topological cyclic homology groups HCn(A) are defined as above but
considering completed projective tensor products. Moreover, one can define
a completion ~,, (A) of Q* (A) which is a Frechet differential graded algebra.
The noncommutative topological de Rham homology H* (A) is defined as
the homology of the complex

it pairs with the topological cyclic cohomology HC* (A) . In fact, if * &#x3E; 0,
it pairs with the reduced topological cyclic cohomology.

8.7. Smooth subalgebras of C*-algebras.

In general the topological cyclic homology of a C*-algebra is too poor.
For instance on a smooth manifold M

HC° (C° (M) ) and = 0 Vp E N.

In fact the right algebra to consider in order to recover the (co)homology
of a smooth manifold M is the algebra of smooth functions on M, as there
are many more interesting cyclic cocycles on C°° (M) than on 7. In
order to further clarify this point let us recall that Connes has defined a
periodicity operator

and introduced the two periodic cyclic cohomology groups

The relationship between the homology of M and cyclic cohomology is then
the following:

7 For example, the following interesting 2-cyclic cocycle on ~ 

fS2 aOdal 1B da2 does not extend to ~~ ~~~~ °
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Notice now that CI(M) is a dense subalgebra of C°(M) which is fur-
thermore closed under holomorphic functional calculus. In general, if A is
a C*-algebra and B C A is a (Fréchet locally convex) dense subalgebra
closed under holomorphic functional calculus, then K* (,t~); such
a subalgebra is usually referred to as a smooth subalgebra. Thus, for ex-
ample, K,,((C-(M)) - K* (C° (M) ) . So, considering a smooth subalgebra
,~ of a C*-algebra A allows us on the one hand to leave the K-theory
unchanged and, on the other hand, to consider an interesting topological
cyclic cohomology and thus, from the previous subsection, an interesting
Chern character homomorphism:

8.8. The smoothing of the index class.

On the basis of our discussion so far, it is clear that in order to

apply an interesting Chern character to our index class Ind(D sign )), we
need to fix a subalgebra B~ of which is dense and closed under

holomorphic functional calculus. As we have explained, it is only by fixing
such a subalgebra that we can hope to land, via the Chern character, into
an interesting noncommutative de Rham homology.

Such an algebra does exist and it is called the Connes-Moscovici

algebra. Let us see the definition. Fix a word metric 11 . 11 on F. Define
an unbounded operator D on £2 (r) by setting D ( e’"’( ) == "1’’’ e’"’( where

denotes the standard orthonormal basis of £2 (r). Then consider
the unbounded derivation 6(T) = [D, ] on B (.~2 (r) ) and set

One can prove that B° is dense in CT r and closed under holomorphic
functional calculus. Thus K*(BOO); the image of E

(M,r
K* (Cr r) ) in under this isomorphism should be thought of as
a "smoothing" of the index class, since in the commutative context it is

nothing but the passage from a continuous index bundle for the Lustzig’s
family to a smooth index bundle. Since is a smooth subalgebra one

may define SZ* (~13°°) and ft.(L3’) as above.
The smoothing of the index class can in fact be achieved directly

and explicitly. We wish to explain this point, for it will be important in
the next subsection. We do it directly for the signature operator but it
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is clear that what we explain will hold for any Dirac-type operator. Let
B°, (Cr C c Cr r, be any smooth subalgebra of Thus is

dense and holomorphically closed in Consider the flat B°-bundle

Proceeding as in subsection 7.3 we see that the signature operator on M
defines in a natural way an odd B~-linear signature operator

For simplicity, we keep the notation Dsign for this operator. It is possible
to develop a B~-pseudodifferential calculus y*B (M, E°° ) and construct
a parametrix for Dsign(M,r) with rests Starting from a (M,r)
parametrix one can prove a decomposition theorem analogous to the one

appearing in (7.3); thus

with and Z_ (oo) finitely generated projective B’ -modules and
inducing an isomorphism (in the Frechet topology) between Ii (00)(M,r) 

and (1+L (00)). The proof of this B~-decomposition theorem rests ul-
timately on the fact that B~ is dense and closed under holomorphic func-
tional calculus in For the proof see Leichtnam-Piazza [74], Appendix
A and also Lott [84] Section 6. Summarizing, the index class can be defined
directly in 

8.9. The higher index theorem
of Connes-Moscovici (following Lott).

- 

One can prove that the heat operator associated to the Dirac laplacian
on M defines a heat operator exp ~ which is a B~-smoothing

operator, i.e. exp ~- Inspired by Bismut’s heat-kernel

proof of the family index ’theorem, Lott has defined in [82] a certain

noncommutative connection on VOC; @C 
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This is the analogue, in the nonabelian case, of (8.3). He has then considered
the rescaled superconnection I

’ 

and, using Duhamel
expansion, the heat operator

For any real s &#x3E; 0, this is, in a sense that can be made precise, a B°-
smoothing operator with coefficients in S2 * (,13°° ) . The restriction of the
superconnection heat kernel to the diagonal 0 H M in M x M is
an element in

taking the vector bundle supertrace strE we get a supertrace
r

Notice that since the algebra of non commutative differential forms SZ* (HOC;)
is not commutative, the super trace STR must take values in the quotient
space

(i.e. modulo the closure of the space of graded commutators; we take the
closure so as to ensure that the quotient space is Frechet) . Using Getzler’s
rescaling [38] and adapting to the noncommutative context Bismut’s proof
of the family index theorem, Lott proves in [82] that

o the noncommutative differential form is closed

. its homology class is equal to the Chern character of the index:

e there exists a certain closed biform

that

with the limit taking place in i

In this way, we have explained how Lott has proved the higher index
theorem on Galois covering: -

In fact, one can prove that W(M,r) is an element in Q*(M) 0 
however, we do point out that the equality (8.9) only makes sense in 
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8.10. The Novikov conjecture for hyperbolic groups.

Let [c] E - and let [Tc] E the

corresponding cyclic cocycle. Lott has also proved [82] that, in general,
there exists a nonzero constant C (£) such that

where on the left-hand-side the pairing between noncommutative de Rham

llomology and cyclic cohomology has been used.

By formula (8.9), this means that if extends to

then

1 Vl

The equality of the first and last term is due to Connes and Moscovici
and it is known as the Connes-Moscovici higher index theorem on Galois
coverings. We anticipate that the extra information given by Lott’s heat-
kernel proof will be crucial on manifolds with boundary. Thus, for cyclic
cocycles that extends from to we have expressed the

higher signatures in terms of the index class:

Since the index class is a homotopy invariant, we conclude that the
Novikov conjecture is established for all those groups having the extension
property for all the cocycles Connes and Moscovici have shown that

Gromov hyperbolic groups do satisfy this fundamental property; their proof
exploits results by Haagerup, de la Harpe and Jolissaint. We shall not

give here the definition of Gromov hyperbolic group but refer the reader
instead to Gromov [43], Ghys [39], Connes-Moscovici [29] and Connes
[28]. Basic examples of hyperbolic groups are provided by fundamental
groups of a compact connected Riemann surfaces of genus g &#x3E; 1 or more

generally by fundamental groups of compact, negatively curved manifolds.

Summarizing:

THEOREM 8.11 (Connes-Moscovici [29]). - If h is Gromov hyper-
bolic, then the Novikov conjecture is true.
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In fact, Connes and Moscovici even proved that the Strong Novikov
conjecture holds for Gromov hyperbolic groups. It should be remarked that
there are now K-theoretic proofs of this result: after the work of Connes-
Moscovici appeared, Ogle has proved [104] by K-theoretic methods that
AR : K,, (BF) 0 R - ® R is injective for Gromov hyperbolic
groups. In fact recently Mineyev and Yu have proved that the Baum-Connes
conjecture holds for Gromov-hyperbolic groups, see [97].

8.11. Groups having the extension property.

We can slightly generalize the content of the previous subsection as
follows. Let r be a finitely generated group. We shall say that r has the
extension property if there exists a subalgebra B~ of CF C C

with the following 2 properties:
~ is dense and holomorphically closed in 

~ Each class [c] E H* (F; C) has a cocycle representative whose corre-
sponding cyclic cocycle Tc E ZC* ((Cr) extends to a continuous cyclic
cocycle on B~.

Examples of groups satisfying the extension property are Gromov
hyperbolic groups and also virtually nilpotent groups, see [58]. For this
latter example it suffices to recall that by a result of Gromov a group F is
virtually nilpotent if and only if is of polynomial growth with respect to
a (and thus any) word metric; the smooth subalgebra for such a group is
simply given by

The following theorem, again due to Connes and Moscovici, is the

main result of this entire section 8:

THEOREM 8.12. - If r has the extension property, then the Strong
Novikov conjecture is true.

9. The cut-and-paste problem for higher signatures.

Let M and N be two oriented compact manifolds with boundary
and let 0, 0 : 8M - 8N be orientation preserving diffeomorphisms. We
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consider the closed oriented manifolds

we shall sometime use the notation Xp := M Uo N- and Xp M u, N-.
Let r : BF, s : BF be reference maps and assume

that the two coverings are cut-and-paste equivalent, see definition 5.2.

The cut-and-paste problem for higher signatures can be then stated
as follows: for any c E H* (Br, Q), compare the two higher signatures:

n n

The problem (raised by J. Lott and S. Weinberger, see [86], Section
4.1 and [122]) is then to determine which higher signatures of closed
manifolds are cut and paste invariant; we refer to [86], Section 4.1 for

further discussion.

As remarked by Lott in [86], Section 4.1, it is implicitly established
in [61], [103], that, in general, higher signatures of closed manifolds are not
cut and paste invariant. We shall describe below a recent counterexample
constructed in [73], Example 1.10 to which we refer for the details.

Example. - Let be the reference

map given by == e’o. Then there exists a compact oriented

4-dimensional manifold F endowed with an orientation preserving dif-
feomorphism h such that (Cp2 x S1, s) is cobordant to M( (F, h), T) where
M(F, h) denotes the mapping torus obtained from ~0,1~ x F by identifying
(0, x) with (1, h(x). It is shown by M. Kreck in [73] that F may be choosen
of the form (Sl x S3)#(Cp2 x S2 ) for a suitable The

reference map T : M(F, h) - BZ induces a map r : F -~ BZ such that r
and r o h are homotopic as (continuous) maps from F to BZ. M. Kreck has
shown that one may assume that r : F -~ BZ is two-connected. Moreover

there exists a manifold with boundary W such that 9W - F and there
are two maps R, R’ from W to BZ such that r = and r o h = Rayj,.
Therefore, (M(F, h), T) (and thus x 31,s)) is cobordant to:

Thus, x x x idsi ) is cobordant to



1242

Now, let denote the fundamental class of S’. Then, since the
signature of of Cp2 is not zero, one checks immediately that

Then, by cobordism invariance, it is clear that ((W Uid W) x ,S’1, (R U R) x
id si ) and ((W Uh W ) x ,S’1, (R U R’) x idsl ) do not have the same higher
signatures. 0

Despite the negative result explained in the previous example, we can
ask whether we can give sufficient conditions (on F and on the two coverings
defined by and ensuring that the higher signatures are indeed
cut-and-paste invariant. This would answer, at least partially, Question 2
in subsection 6. Now, for the lower signature fm L(M) we have explained
3 different ways for treating the cut-and-paste problem; the first method
makes use of the Atiyah-Patodi-Singer index formula for the signature of a
manifold with boundary , the second method employs a purely topological
argument, whereas the third method uses a spectral flow argument (based,
ultimately, on a gluing formula for the index and a variational formula for
the Atiyah-Patodi-Singer index).

As we shall now see, these 3 methods can be pursued in the higher
case too. We shall begin by the first method and in fact explain a general
theory of higher signatures on manifolds with boundary, thereby answering
simultaneously to Question 2 and Question 3 of section 6.

10. Higher signatures on manifolds with boundary.

10.1. Introduction and main strategy for the definition.

10.1.1. Introduction. Let M be an oriented manifold with bound-

ary and let r : be a classifying map. Let [c] E Since

the expression fM L(M, B7g)Ur*[c] depends on the choice of the metric g, it
is not obvious how to define the higher signature sign(M, r; [c]) associated
to r and [c] E H’ (BIP, R). Still, Theorem 2.8 shows that the difference

is an oriented homotopy invariant of the pair (M, aM); in other words by
subtracting a suitable boundary correction term to the metric-dependent
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integral fm L(M, we have produced a homotopy invariant of the pair
(M,8M). In the higher case, having observed that on a manifold with
boundary M the higher analogue of J~ L(M, V ) is the metric-dependent
integral

appearing in (8.10), we ask ourselves the following:
Fundamental question: which boundary correction term should we

subtract to (10.1) in order to obtain a homotopy invariant noncommutative
de Rham class in H* 

To have a feeling on the strategy we shall follow, let us recall how
Lustzig managed to prove the Novikov conjecture for r = Zk in the closed
case. The proof was in four steps:

(i) Define a suitable family of twisted signature operators 
:= ~7(1)), and its index class in 

(ii) Prove the homotopy invariance of the index class 
KO(T k).

(iii) Apply the family index formula, thus computing the Chern
character of the index class as

(iv) Express the higher signatures in terms of the pairing between this
cohomology class and a homology class [Tc] E H* (T ~ , R) naturally defined

10.1.2. Strategy in the commutative case. Let now M have a
boundary, 8M # 0. We assume again 7rl (M) == The Lustzig’s family

is still perfectly defined and is a family of Dirac-type operators
on the manifold with boundary M. Keeping in mind Lustzig’s approach and
our discussion in the case of a single manifold (Theorem 2.8), we would like
to

(i) define a Atiyah-Patodi-Singer (= APS) index class, in for

the Lustzig’s family.

(ii) establish the homotopy invariance of this index class.

(iii) prove a family index formula for its Chern character in H* (T ~, R) ;
this formula will involve the boundary correction term we alluded to in the
fundamental question raised above
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(iv) define the higher signatures by coupling the Chern character with
T, E R).

10.1.3. Strategy in the noncommutative case. Let us pass to
the noncommutative case and consider (M, r : M --+ BF). Keeping in mind
the analogy between higher index theory and family index theory, we would
like to

(i) define a APS index class associated to this class will live

in I~* (,~3°° ) = ° 

(ii) establish the homotopy invariance of this index class.

(iii) prove a higher index formula for its Chern character in 
this formula will have to involve the boundary correction term we alluded
to in the fundamental question.

(iv) define the higher signatures sign(M, r ; [c]) for a group satisfying
the extension property, by coupling the Chern character in with

the extended cyclic cocycle Tc E defined by [c] E H* (r, 
H*(BT,C).

The details of this program, which was conceived by Lott in [83], shall
now be explained. We begin once again by the commutative case.

10.2. The Bismut-Cheeger eta form.

Let M be an even dimensional oriented manifold with boundary with
7r, (M) = Zk as in the previous subsection. Consider an odd Dirac-type
operator D : C~ (M, E) ~ C°° (M, E) acting on the sections of a Z2-
graded Clifford bundle. For each 0 E Tk, one has a twisted operator Dg
acting on C°° (M; E Q9 where Fe is the flat complex line bundle of
M associated with 0 C T~ := (see Section 7.3.3). Let
us consider the family D := on M parametrized by the torus
T’~ . From the variational formula for the Atiyah-Patodi-Singer index, see
(3.7), one realizes immediately that the family of Atiyah-Patodi-Singer
boundary value problems associated to the family of Dirac-type operators
D :~ is not continuous in 0 E Tk, unless the boundary family
Da is invertible (notice that in the latter case there would
not be any spectral flow). Under this additional assumption Bismut and
Cheeger defined an index class Ind(D, TI;::) E and proved a family
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index formula for its Chern character in Heven (Tk , R):

In this formula w is the bi-form in Q*(M x Tk) we met in subsection 8.1,
C is the Bismut-Cheeger eta form associated to Da.

This is our boundary correction term. The eta form is defined as

with B, the superconnection induced on the boundary by the rescaled
Bismut superconnection As . The supertrace appearing in this formula is
the odd fiber-supertrace on the odd-dimensional boundary; it is defined

using the isomorphism Cl ( 1 ) , with C1 ( 1 ) denoting the
complex Clifford algebra generated by 1 and a.

As an example, the 0-degree part of this differential form, computed
at 0 E T ~ , is simply the eta invariant of De,a :

Notice that the operator is again a smoothing operator with
differential form coefficients. The convergence of the s-integral in (10.3)
near zero is non-trivial and requires Bismut’s local index theorem for
families. The convergence at oo depends heavily on the assumption that
the family is invertible. The Bismut-Cheeger eta form can be defined for
any inverti ble family of Dirac-type operators, not necessarily arising as
a boundary family. It is more generally defined for any invertible family

acting on the sections of a vertical Clifford bundle on a fiber
bundle Z - X - B with odd dimensional fiber.

10.3. Lott’s higher eta invariant in the invertible case.

We now pass to the noncommutative case. Let (N, r : N - BF)
be closed and odd dimensional (for example the boundary of an even
dimensional manifold with boundary). We fix a Riemannian metric g
on N and consider a Dirac-type operator D on N acting between the
sections of an ungraded Clifford module E. We consider E Q9 
E (B E, with Cl(l) the complex Clifford algebra generated by 1 and a.

Let D(N,r) : C’ (N, E 0 V) be the associated C;(r)-
linear operator, with V = x r r*Eh. Fix now a smooth subalgebra
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B° C for example the Connes-Moscovici algebra. We still denote
by the operator acting on COC;(N,E 0 VOC;), with V°° _ x r

r*Er. The rescaled Lott superconnection in this odd dimentional context
has the form B~ = -I- B7. The Schwartz kernel IC(t) of the

operator I , which is a smoothing operator with
coefficients in SZ * can be restricted to the diagonal in N x N, giving

an element in

where we identify N H A. As in the previous section there is an odd-

supertrace Strcl(,) acting on the endomorphisms of E Q9 C1 (1); using this
vector-bundle odd supertrace we can define the odd supertrace STRCI(I)
of the smoothing operator + this is the non-

commutative differential form defined by

Once again, since Q,, (13-) is not commutative, the odd super trace STRCI(L)
must take values in the quotient space

(i.e. modulo the closure of the space of graded commutators). Summariz-
ing, for each t E (0,00) we can consider the following noncommutative
differential form

This is the non commutative analogue of the integrand in formula (10.3).
The following theorem is due to J. Lott:

THEOREM 10.5. - Assume that V(N,r) is invertible in the Mish-

chenko-Fomenko calculus. Then

converges in

The resulting form is called the higher eta invariant ofV(N,r)’

Remarks. - (i) The invertibility of V(N,r) in the Mishchenko-

Fomenko calculus is equivalent to the existence of a full gap at A = 0
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in the L2-spectrum of the operator D on N, i.e. to the L2-invertibility
of D.

(ii) Theorem 10.5 is proved by Lott in [83] for virtually nilpotent
groups and implicitly in [84] in the general case. g For additional details on
the general case see also [77], Theorem 4.1.

(iii) The higher eta invariant of Lott is the noncommutative analogue
of the Bismut-Cheeger eta form; the convergence of the integral near t = 0
follows from the local index theory developed by Lott, in the same way
that the convergence of the eta-form for families is due to Bismut’s local

index theory. On the other hand, the convergence for t ~ +oo is much
more delicate. Once again, the proof depends heavily on the invertibility
of D(N,r).

10.4. Higher Atiyah-Patodi-Singer index theory 
in the invertible case.

Let (M, g) be a compact even-dimensional Riemannian manifold with
boundary. We assume g to be of product type near OM and we let D be a
generalized Dirac operator acting on the sections of a Z2 -graded Hermitian
Clifford module E. As a fundamental example we could consider the
signature operator Dsign . Let r be a finitely generated discrete group and
let C be a smooth subalgebra. Let r : M - Br be a continuous
map defining a r-covering M - M. We denote by D the lift of D to M.
We denote by I the 

linear operator induced by D. The boundary operator associated to D will
be denoted, as usual, by Da. Making use of Da we also get an operator

which is nothing but the boundary operator of V(M,r). We set
rlaM := ra. Assume now that is invertible in the Mishchenko-

Fomenko calculus; equivalently, we assume that Da is L2 -invertible. Let

8 Charlotte Wahl pointed out that in the proof of Proposition 19 in [84] it is implicitly
used that each Banach algebra Bj is closed under the holomorphic functional calculus.
This is an extra assumption that should be added to the hypotheses of the Proposition.
In the case treated here, where the algebra B is the Connes-Moscovici algebra of a
discrete group, this assumption is indeed satisfied, as can be seen using the arguments
of [56], Proof of Theorem 1.2.
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this is a Oth order B~-pseudodifferential operator and we can consider the
domain

The following Theorem is conjectured in [83] and proved in [74], [77],
Appendix.

THEOREM 10.7. - Assume that VC8M,ra) is invertible in the Mish-
chenko-Fomenko calculus. Then the operator D(M,,) uritll domain

C-(M,E+ 0 gives rise to a well defined APS-index class

Ind ( I - The following formula holds
in the non commutative topological de Rham homology of Boo:

r r 1 1

with.

In particular: under the invertibility assumption we have proved that
Lott’s higher eta invariant is the boundary correction term we have been
looking for.

The proof of the theorem rests ultimately on the heat-kernel proof
of the higher index theorem given by Lott and on an extension to Ga-
lois coverings of Melrose’s b-pseudodifferential calculus on manifolds with
boundary. For the latter, the reader is referred to the book by Melrose [92]
and also to the surveys [91] Grieser [41].

10.5. Higher signatures on manifolds with L2-invisible boundary.

Let (M, g) be a Riemannian manifold with boundary; we assume the
metric to be of product type near the boundary. Let M 2013~ M be a Galois
h-covering; let r : M 2013~ BF be a classifying map. We shall assume that
the operator is invertible in the Mishchenko-Fomenko calculus.

(aM,ra) 

Equivalently, the operator is L2-invertible, or, again equivalently,
the differential-form Laplacian is L2-invertible in each degree. We

shall say that the boundary 8M is L2-invisible. Recent results of Farber
and Weinberger show that there do exist coverings having a L2-invisible
boundary, see [36]. See also the subsequent paper [51] from which the
term L2-invisible is borrowed. Since is L2-invisible, the higher
eta invariant of Lott, I, is well defined. We set
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DEFINITION 10.10. - We define the higher signature class in

of a covering (M, r : M - BF) with L2-invisible boundary as

Notice that in this formula is any smooth subalgebra of Cr T , for

example the Connes-Moscovici algebra.

Let now N be a manifold with boundary and let (N, s : N - BF)
be a Galois covering. Let h : M, with h(8N) C o9M, a homotopy
equivalence between (N, s : BF) and (M, r : M --~ A

fundamental result of Gromov and Shubin [45] states that (8N, s)aN :
8N - is then also L2-invisible. The following result is conjectured
in Lott [83] and proved in Leichtnam-Piazza [77]:

THEOREM 10.12. - Let M be an oriented manifold with boundary,
let r : M - Bh be a classifying map and assume that (aM, ra : BF)
is L2-invisible. Then the higher signature class a(M, r) is a oriented

homotopy invariant of the pair (M, )M) and of the map r : M - BF.

Proof. Following techniques of Kaminker-Miller [60], one proves
that the APS-index class introduced in Theorem 10.7, II~) E
KO(B’), is a homotopy invariant. The Theorem follows at once from the
higher index formula (10.8) applied to the signature operator. D

DEFINITION 10.13. - Let [c] E Let F have the extension

property, see subsection 8.1 I, and let Tc E be the extended cyclic
cocycle associated to c. We define higher signatures sign(M, r, [c]) E C on
a manifold with L2-invisible boundary by setting

If the boundary is empty then, up to the constant C(.~) appearing in
(8.10), we reobtain the Novikov higher signatures.

COROLLARY 10.15. - Let F be a finitely generated discrete group
having the extension property. On manifolds (M, r : M - BF) with L2-
invisible boundary the higher signatures (10.14) are oriented homotopy
invariants for each [c] E H* (F, C) .
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The result hold more generally for certain twisted higher signatures,
manufactured out of the index class of twisted signature operators. See [77].

Remark. - Corollary 10.15 should be seen as a topological applica-
tion of the higher Atiyah-Patodi-Singer index theorem 10.7. For applica-
tions in the realm of positive scalar curvature metrics see Leichtnam-Piazza

[78].

10.6. Non-invertibility, perturbations and index classes.

Let (M, r : M - BF) be a covering with non-empty boundary. We
set, as usual, M - r* Eh, ra := r I aM . The invertibility assumption on

equivalently, the L2-invertibility assumption on very(aM,re) I

strong. In fact, until the recent work of Farber-Weinberger [36], it was an
open question whether for a Galois covering r ~ N - N it is always the
case that the operator ON is not L2-invertible (see [85]).

For example, when r = 7~~ the invertibility condition requires the
cohomology groups of 8M with coefficients in the flat bundle Fo to vanish
for all 0 E T . Although this is indeed a strong hypothesis, there is no way
to avoid it if one wants to set up a continuous family of APS-boundary
value problems for the Lustzig’s family or if one wants to prove the large
time convergence of the integral defining the eta form. Similarly, in the
noncommutative context, we do need the invertibility of for the

projection 
/ B.

to make sense as C*r T-linear operator 9. The invertibility is also necessary
in order to prove the convergence of the higher eta invariant. The question
then arises as to whether it is possible to lift the invertibility assumption on
the boundary operator and still develop a family index theory or a higher
index theory on manifolds with boundary. This problem was tackled for the
first time by Melrose and Piazza in [94] [95] and subsequently extended to
the noncommutative context in Leichtnam-Piazza [75], [79]. We shall now

9 Notice that in the context of C*-algebras Hilbert modules we only have a continuous
functional calculus; in particular the operator ( I does not make sense as

B°°-linear or Cr h-linear operator. It is only by going to Neumann context that

one can make sense of the operator ;
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give a very short account of this theory, concentrating on the results leading
to the definition of a (generalized) Atiyah-Patodi-Singer index class.

10.6.1. Spectral sections. Let D be a Dirac-type operator acting
between the sections of a Hermitian Clifford module E. Let (M, r : M -
Br) be a Galois covering of a manifold with boundary M. We shall
concentrate on the even-dimensional case; thus 8M is odd-dimensional. Let

D(M,,) be the C*r T-linear operator associated to D and (M, r : M --&#x3E; Bh).
The starting point in Melrose-Piazza [94] is the observation that although
the boundary operator is not invertible, its index class in Kl (CT h)
is equal to zero (by cobordism invariance). In order to define a higher APS-
index class in Ko( C;r) we need a projection P playing the role of the non-
existing projection Of course, we need somewhat special projections;
these are nowadays called spectral sections. Let (N, s : N --+ BF) be a odd-
dimensional closed Galois covering (we shall eventually choose (N, s : N
BIP) = (8M, ra : Br)). A spectral section associated to D = D(N,,)
is a self-adjoint C*r -linear projection P with the additional property that
there exists smooth functions

x2 = 1 on a neighborhood of the support of Xl, and such that

Intuitively, P is equal to 1 on the large positive part of the spectrum and
equal to 0 on the large negative part of the spectrum, precisely as when

the latter is defined. In fact, we have already encountered spectral sections
in this paper; see the Remark at the end of subsection 2.4. The main result

is then the following:

THEOREM 10.16 ([94] [124] [79]). - A spectral section for 
exists if and only 0 in K1(C;r).

10.6.2. Index classes and relative index theorem. The cobor-

dism invariance of the numeric index can be extended to index classes

Rosenberg [112] [75], Proposition 2.3. Thus Ind = 0 in 
hence there exists a spectral section P for V(8M,ra). We can use this 
linear projection in order to define the domain

One can prove that D(M,r) with domain C°° (M, E+ 0 V, P) gives rise to
an index class Ind(V(M,r), P) E Ko(CTr) a la Atiyah-Patodi-Singer, see
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Wu [125] [79] for the proof. Different choices of spectral sections produces
different index classes; however there is a relative index theorem describing
how these index classes are related: given spectral sections P, Q there is a
difference class [P - Q] E such that

This relative index theorem, first proved in [94] and then extended in [76]
[81], is the higher analogue of the last formula of subsection 2.4.

10.6.3. Perturbations. Let (N, s : N - Bh) odd dimensional and
D a Dirac type operator. Assume that = 0. Fix a spectral
section P. Using P one can construct a smoothing operator CN,P E ~C r
such that D(N,,) + CN p is invertible in the Mishchenko-Fomenko calculus.
Moreover

In words: P is the positive spectral projection for the perturbed operator
Ð(N,s) + CN,p. We call such an operator CN,P a trivializing perturbation.
Let us go back to the case where (N, s) = (åM,ra), with (M, r : M --+
Br) an even dimensional Galois covering with boundary. Fix a spectral
section 7~ for V(aM,ra); fix a trivializing perturbation CaM,p. One can
extend the operator CaM,P to the whole manifold with boundary M. The
resulting operator CM,P gives a perturbation D(M,r) + CM,P which has,
by construction, an invertible boundary operator. It turns out that the

index class Ind(D(M,r), P) à la Atiyah-Patodi-Singer can also be described
as an L2-index class for the perturbed operator -f- CM,p extended
to the manifold obtained by adding a cylindrical end to M. Cylindrical
index theory is also referred to as b-index theory, because of the exhaustive
treatment given by Melrose using the b-pesudodifferential calculus. See [92].
Summarizing: the index class Ind(D(M,,), P) is equal to the b-index class
Indb (D(M~~.) + The advantage in considering the latter index class
comes from the invertibility of the boundary operator: this allows us to
consider the higher eta invariant of the boundary operator, +

CaM,P ) ) and prove a higher index formula similar to 10.7. The higher eta
invariant, denoted

only depends on P (and not on the particulat choice of perturbation)
modulo exact forms. This program is achieved in [94] [95] in the family case
and in [75] in the Galois covering case. Recent topological applications of
this general theory are given in Piazza-Schick [106].
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10.7. Middle-degree invertibility
and a perturbation of the signature complex.

10.7.1. The middle-degree assumption. Let us now go back to
the signature operator Dslgn on a covering with boundary (M, r : M -(M,r)
Br) and to the problem of defining higher signatures when the operator
Dsign is not invertible. The above subsection shows how to extend

the Atiyah-Patodi-Singer index theory developed in the invertible case
to this general case: crucial to this extension is the notion of trivializing
perturbation. Unfortunately, the relative index formula (10.17) shows very
clearly that the resulting index classes will depend on the choice of the
trivializing perturbation. This is not very encouraging if our goal is to

produce a homotopy invariant APS index class. In his fundamental paper
[83] Lott points out an heuristic cancellation mechanism indicating why the
following assumption might be sufficient for defining a canonical signature
class.

Let (N, s : N --+ Br) be an odd dimensional Galois covering of a
closed oriented manifold. For example (N, s : N ~ Bh) _ (8M, ra : 8M -::
Br) . Let 2m - 1 = dim N. Let d denote the de Rham differential on N.
Endow N with a F-invariant Riemannian metric.

ASSUMPTION 10.19. - The differential form Laplacian acting on
has a strictly positive spectrum.

If V = CT h x r s* Eh and if dv denotes the twisted de Rham

differential, then it is proved in [72] that Assumption (10.19) for (N, s)
is equivalent to the following:

ASSUMPTION 10. 20. - Let °72) (N, V ) denote the L 2 .][, -completion
The operator

urith domain equal to the C;r-Sobolev space has closed image.

These equivalent assumptions are for example satisfied when N has a
cellular decomposition without any cell of dimension m. Thanks to a deep
result of Gromov-Shubin [45] we know that these are homotopy invariant
conditions. Notice that if Assumption 10.19 is satisfied, then necessarily
the index class of the signature operator in is equal to zero.



1254

Since the index class of the signature operator is concentrated in mid-
dle degree, Assumption 10.19 makes us guess that it should be possible to
find a set of symmetric trivializing perturbations of the boundary operator
producing first of all a well defined higher eta invariant and, secondly, a
well defined index class, both independent of the perturbation chosen. This
is indeed the case. There are in fact two equivalent ways to proceed: one,
proposed by Lott in [86] and fully developed in [72] contructs perturbations
of the signature complexes, on ~M and on M, with the right symmetry
property for making the eta invariant and the index class well defined. This
is the approach we shall explain below. The other approach, developed in
Leichtnam-Piazza [76], makes use of a special set of spectral sections for the
boundary signature operator; these spectral sections have a certain sym-
metry property with respect to forms of degree (m - 1). We mention the
approach through symmetric spectral sections because we shall use it later,
in conjunction with the cut-and-paste problem for higher signatures. Now,
following John Lott [86] and Leichtnam-Lott-Piazza [72] we shall explain
how it is possible to add a finitely -generated perturbation to the com-
plex of B~ -differential forms on aM and consequently perturb B

into an inverti ble (generalized) signature operator. To this aim we have
to recall, in the next sub-section, how to express in terms of the

L3’-flat exterior derivative d and the Hodge duality operator T acting on
the Hermitian complex of differential forms.

10.7.2. More on the signature complex on closed mani-
folds. First of all we recall the following

DEFINITION 10.21. - A graded regular n-dimensional Hermitian
complex consists of

1. A Z-graded cochain complex (£*, D) of finitely-generated projec-
tive left 

2. A nondegenerate quadratic form Q : E* x £n-* - ,t3°° and

3. An operator T E HomB~ (,E*, .6’-*) such that

defines a Hermitian metric on.E.
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Let M be a closed oriented n-dimensional Riemannian manifold and

let r : M ~ Br be a reference map. We set V°° - x r 

Let f2*(M; V°° ) denote the vector space of smooth differential forms with
coefficients in V°° . The twisted de Rham differential will be still denoted

by d. If n = dim(M) &#x3E; 0 then f2*(M; VOC;) is not finitely-generated over
,l3°°, but we wish to show that it still has all of the formal properties of
a graded regular n-dimensional Hermitian complex. If a E f2*(M; V°° )
is homogeneous, denote its degree by In what follows, a and 13
will sometimes implicitly denote homogeneous elements of 

we define

Extending by linearity (and antilinearity), g
. Define a B~-valued quadratic

It satisfies Q (f3, a) == Q (a, 0)*. Using the Hodge duality operator *, define

and the inner product

Warning: in this subsection the differential D should not be confused
with a Dirac-type operator.

It satisfies D2 = 0. Its dual D’ with respect to Q, i.e., the operator

adjoint of D with respect to 

DEFINITION 10.23. - If n is even, the signature operator is

It is formally self-adjoint and anticommutes with the Z2-grading operator
T. If n is odd, the signature operator is
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10.7.3. More on the signature complex on manifolds with
boundary. Now suppose that M is a compact oriented manifold-with-
boundary of dimension n = 2m. Let r : M ~ Br be a reference map and let
8M denote the boundary of M. We fix a Riemannian metric on M which is
isometrically a product in an (open) collar neighbourhood Ll = (0, 2)~ x 8M
of Let Vo denote the pullback of V°° from M there is a natural

isomorphism

One can show that, up to explicit isomorphisms, the signature oper-
ator can be written near the boundary as

10.7.4. The perturbed signature complex. Recall that B~

denotes the Connes-Moscovici sub-algebra of and that on ~M we

have the bundles: 
- -

The following Proposition, from [86], is proved using Assumption 10.19 in
a crucial way. See [72].

~ 

PROPOSITION 10.26. - There exists a cochain complex C* --

by finitely generated left projective B’-modules. There are two maps
such that the following

property is satisfied. For any real E &#x3E; 0 the differential Dc on C* defined

by

is such that = 0 and the complex (C*, Dc) has vanishing cohomology.

Define a duality operator TO on C* by

The signature operator associated to the Yperturbed complex (C* , Dc) is

defined to be

If E &#x3E; 0, it follows from the vanishing of the cohomology of C* that
is an invertible self-adjoint B~-operator.
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10.8. Lott’s higher eta invariant in the non-invertible case.

We are now in a position to recall the definition of the higher eta
invariant of Lott for a closed (2m - 1)-dimensional covering (N, s : N ---+
Br) satisfying Assumption 10.19. This material comes from [86] and [72].
We shall concentrate directly on the case (N, s : TV 2013~ (aM, ra).

Let

be Lott’s connection for the bundle E = A*(8M), see (8.8). As in [86],
(3.28), let

be a connection on W* which is invariant under the grading operator and
preserves the quadratic form of W * . Set V~ = ~ ~ ~ W * ; thus

Let Cl ( 1 ) be the complex Clifford algebra of C generated by 1 and ~, with
now be a nondecreasing function such that

Consider the element

here STRC1(1) is defined as in subsection 10.2. The higher eta invariant of
(,9M, ra ) is, by definition,

Since E(s) = 0 for s C (0, ], it follows that the integral is convergent
for s 1 0 (in fact, the integrand near s = 0 is the same as the one for

the unperturbed operator and for the latter we know that convergence is

implied by Lott’s heat-kernel proof of the higher index theorem). Since
E(s) - 1 for s &#x3E; 2 and since the perturbed signature operator is

invertible, it follows that the integral is also convergent as s T oo. It is

shown in [86], Proposition 14 that, modulo exact forms, the higher eta
invariant is independent of the particular choices of the function

E, the perturbing complex W* and the self-dual connection B7w .
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10.9. Homotopy invariant higher signatures
on a manifold with boundary

10.9.1. Conic and cylindrical higher index classes. Having de-
fined the higher eta invariant under the more general hypothesis of middle-
degree invertibility, we would like to show that it enters as a boundary
correction term in a higher index theorem for a homotopy-invariant index
class on our covering with boundary. We begin [72] by recalling the con-
struction of a perturbed conic signature operator with boundary
operator equal to the invertible perturbed signature operator intro-

duced in the previous subsection, see (10.29).
We take an (open) collar neighborhood of 8M which is diffeomorphic

to (o, 2) x aM. Let Sp E C°° (o, 2) be a nondecreasing function such that
if x ) 3/2. Given t &#x3E; 0, consider a

Riemannian metric on int(M) whose restriction to (0, 2) x ~M is

Consider the complex 2)®W*. It is endowed with a natural

differential Dalg. Then set:

C* is endowed with a natural direct sum duality operator Te.

Let 0 E C~(0, 2) be a nonincreasing function satisfying §(x) = 1 for
, We extend f and ~ to act on

, respectively, by

and

Using the cutoff function g5, it makes sense to define an operator on C* by
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Note that 0, as § is nonconstant. We have thus defined an
"almost" differential Dene on the conic complex

The perturbed conic signature operator
satisfies

By construction, the boundary signature operator associated to 
is precisely the perturbed signature operator constructed in the
previous section.

Summarizing: we have defined a perturbed signature complex on

(M, r : M - Br) with the property that the associated signature operator
has an invertible boundary operator.

Using this fundamental fact one can prove that defines an

index class

The proof, see [72], employs in a crucial way elliptic analysis on conic
manifolds, see [25], Brfning-Seeley [22]. We shall see in a moment that the
conic index class is homotopy invariant. This is a fundamental step in our
strategy for defining homotopy-invariant higher signatures. The last step
will consist in proving an index theorem. However, to do so it turns out
that the cylindrical, or b, picture is more convenient. Thus we sketch briefly
the construction of a b-signature operator in an extended version

of Melrose b-calculus; the boundary operator will be once again 

Thus, we consider a b-metric g which is product like near the bound-
ary :

for 0  x  2. Recall that a b-differential form is locally of the form

1B dyI. The space of b-differential forms is usually denoted by bQ* .

We consider a new differential Dc on the perturbed complex C* =
; on the degree j-subspace we put
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where 9b and f b are b-operators associated in a natural way to ~g and Of
respectively.

Let Dc + (Dc)* be the b-signature operator associated to
the b-complex (C* , DC ) . Then J is odd with respect
to the Z2-grading defined by the Hodge duality operator Tc on C*. Since
the boundary operator is equal to and is therefore invertible, one can

prove that the perturbed b-signature operator C~ r-Fredholm,
i.e. invertible modulo C*r r-compact operators. Thus there is a well defined
index class E To prove these statements an extended

version of Melrose’s b-calculus must be used, see [72].
The following theorem is proved in [72].

THEOREM 10.37. - The following equality holds in 

Proof. There is also a perturbed signature operator Dsign with
respect to an ordinary product-like metric on M (meaning, of type dx2 +
gaM near the boundary). Since the associated boundary operator is still

Ds’g’, hence invertible, we can define the projection

and a higher index class a la Atiyah-Patodi-Singer. One

proves that the following two equalities hold in

10.9.2. Homotopy invariance of the index class. We can finally
state the first crucial result toward a definition of homotopy invariant higher
signatures:

THEOREM 10.38. - Let (M, r : M - Br) be such that (8M, ra)
satisfy the middle-degree assumption 10.19. The index class 

a homotopy invariant of the pair and the classifying
map r : M --~ Br. Consequently, the b-index class is also a

homotopy invariant.
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Proof. (Sketch) One observes that the resolvent of is

and that small, provided that the real t &#x3E; 0

is small (i.e. the length of the cone is large). Then one can extend
fundamental results of Hilsum-Skandalis [53] for t &#x3E; 0 small enough,
proving the homotopy invariance of the index class. (We recall that Hilsum
and Skandalis have proved the homotopy invariance of the index class
for a signature operator with coefficients in an almost flat bundle of

C* -algebras). The details are somewhat of a technical nature and can
be found in [72]. D

10.9.3. The index theorem and the higher signature class

a(M, r) E Now we can state the following theorem, proved in

[72].

THEOREM 10.39. - Under Assumption 10.19 the following formula
holds:

where W(M,r) is, once again, the bi-form appearing in Lott’s heat-kernel

proof of the higher index theorem and the higher eta invariant
for the perturbed signature operator 

Thus, under the middle-degree assumption 10.19 on the boundary
covering (aM, ra : 8M - Br) we are finally in the position of extending
the definition of higher signature class given in subsection 10.10

Using 10.38 and 10.39 we can finally state one of the main results of

[72] :

THEOREM 10.41. - The class ?(M,r) in H* (13°° ) is a homotopy
invariant of the pair (M, 8M) and the classifying map r : M - BF.

10.9.4. Homotopy invariant higher signatures in the non-
invertible case. We are approaching the end of our journey. Let F be a

group with the extension property. For example, r is Gromov hyperbolic or

virtually nilpotent. Let c E C) be a group cycle and let Tc E 
be the associated cyclic cocycle. We can assume 7c to be extendable and
we still let 7-c E ZC* (,l3°° ) be the extended cocycle.
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DEFINITION 10.42. - The complex number

is called the higher signature associated to (M, r) and [c].

The following theorem gives an answer to Question 3 in section 6:

THEOREM 10.43 [72]). - Let (M, r : M -~ Br) be a Galois

covering with boundary (8M, ra : (9M --+ Br) satisfying the middle-degree
assumption 10.19. Let r be generated group with the extension
property. The higher signatures

are homotopy invariants for each [c] E H* (r, C).

10.10. Cut-and-paste invariance of higher signatures:
the index theoretic approach.

We now go back to the cut-and-paste invariance of Novikov’s higher
signatures on a closed manifold. We are looking for sufficient conditions
ensuring that the higher signatures are indeed cut-and-paste invariant.
Recall that for the lower signature we explained 3 approaches to the
problem:

(i) index theoretic,
(ii) topological,
(iii) via a spectral-flow argument.
The following theorem, from [72], extends to the higher case the first

of these approaches. We shall only treat the even-dimensional case, the
odd-dimensional case being more complicated to state and to treat.

Let M and N be two compact oriented 2m-dimensional manifolds
with boundary. Let 0 and V) two orientation preserving diffeomorphisms
from aM onto 9N. Consider the closed manifolds Xo := M U~ N- and
X~ .- M Up N-. Let r : M U~ ~V’ -~ BF and s : M Up TV- -~ Br be
two reference maps; we assume that these two coverings are cut-and-paste
equivalent.

THEOREM 10.44 ([72]). - Assume that r has the extension prop-
erty and that (aM, ra : 8M - satisfies Assumption 10.19. Then, for
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every [c] E = H*(Br,C) one has:

In particular under the stated assumptions the higher signatures are cut-
and-paste invariant.

Remark. - Notice that (aM, ra : 8M - Br) satisfies Assumption
10.19 iff (aM, sa : o~M -~ Br) satisfies it.

Proof. We begin by (10.45). As in subsection 3.1 we write:

since by the established homotopy invariance = 6(Cyl, TI8M
x Id) and the latter is zero for the usual orientation argument concerning
the eta invariant. By Lott’s higher index theorem on closed manifolds

r

We can rewrite the left hand side of (10.45) as

From (10.47) we immediately obtain (10.45). Moreover, (10.46) is an

immediate consequence of (10.45). D

11. The topological approach to the cut-and-paste problem
for higher signatures.

In this section we shall describe a topological approach to the study
of cut and paste properties of higher signatures. This material comes from
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Leichtnam-Luck-Kreck [73] and should be seen as the higher analogue of
what we presented in subsection 3.2. Namely, assuming that 
satisfies Assumption 10.19, we shall define a symmetric signature a (M, r) E

which is both a higher generalization of the lower topological
signature of and a generalization of the Mishchenko symmetric
signature when the boundary is empty. The properties of a(M, r), namely
additivity and homotopy invariance, will allow us to extend Theorem 10.44
to the discrete finitely presently groups F satisfying the Strong Novikov
Conjecture.

11.1. The symmetric signature on manifolds with boundary.

We shall follow the notation in [73]; in particular we denote by
M 2013~ M a Galois covering with base M.

Let n = 2m be an even integer and M be an oriented compact n-
dimensional manifold possibly with boundary. Let (M, r : M ~ BF) a
Galois covering. Let 8M - aM and M - M be the r-coverings associated
to the maps 8M - BF and r : M ~ BF. Following Lott [83],
Section 4.7 and [72], Assumption 1 and Lemma 2.3, we make the following
assumption about 

ASSUMPTION 11.1. - Recall that n = 2m . Let C* (aM) be the
cellular ZF-chain complex. Then we assume that the C,*(F)-chain complex
C,,(,9M) CT (r) is CT (h)-chain homotopy equivalent to a Cr (r)-chain
complex D* whose m-th differential dm : Dm_ 1 vanishes.

Lemma 2.3 in Leichtnam-Lott-Piazza [72] shows that this assumption
is equivalent to Assumption 10.19. Notice that Assumption 11.1 is equiva-
lent to the assertion that the m-th Novikov-Shubin invariant of aM is oo+
in the sense of Lott-Liick [87], Definition 1.8, 2.1 and 3.1.

Under Assumption 11.l we shall now assign to (M, r) an element

Fix a chain homotopy equivalence u : C*(8M) C;(r) -+ D* as in
Assumption 11.1. Define D* as the quotient chain complex of D* such that
Di = Di if 0  i ~ m - 1 and Di - 0 for i &#x3E; m. One then gets a Poincar6

pair j* : D* -~ D* whose boundary is D*. By glueing [109] j* : D* --~ D*
with the Poincar6 pair
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with the help of u (along the boundary C* (aM) ) one gets a true Poincar6
complex whose signature in is denoted Our symmetric
signature is the image of this class under the composi-
tion

This construction of the invariant a(M, r) by glueing algebraic
Poincar6 bordisms is motivated by and extends the one of Weinberger [122]
(see also [86], Appendix A) who uses the more restrictive assumption that
C* (8M) 0zr c; (r) is Cr (F)-chain homotopy equivalent to a Cr (r)-chain
complex D* with Dm = 0. In fact, when Dm = 0 the invariant a(M,,r)
coincides with the one of Weinberger [122]. The relationship to symmetric
signatures of manifolds-with-boundary, and to the necessity of Assumption
11.1, was pointed out by Weinberger (see [86], Section 4.1).

We will call a (M, r) E Ko (C,* F) the C*r F-valued symmetric signature
of (M, r). When 8M is empty, this element a (M, r) agrees with the

(Mischenko) symmetric signature we defined in 7.4. See also [109], p. 26
on this point.

11.2. Properties of the symmetric signature.

The main properties of this invariant will be that it occurs in a glueing
formula, is a homotopy invariant and is related to higher signatures. More

precisely:

THEOREM 11.3.

(a) Glueing formula.

Let M and N be two oriented compact 2m-dimensional manifolds
with boundary and let 0 : : 8M - 8N be an orientation preserving
diffeomorphism. Let r : M Uo N- ~ BF be a reference map. Suppose
that satisfies Assumption 11.1. Then

(b) Cut-and-Paste invariance.

Let M and N be two oriented compact 2m-dimensional manifolds

with boundary and let 0,0 : : 0M - ON be orientation preserving
diffeomorphisms. Let

be cut-and-paste equivalent.
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Suppose that satisfies Assumption 11.1. Then

(c) Homotopy invariance.

Let Mo and M1 be two oriented compact 2m-dimensional manifolds

possibly with boundaries together with reference maps ri : Br for

i = 0,1. Let ( f , 8 f ) : (Mo, (M1, aMI) be an orientation preserving
homotopy equivalence of pairs with r1 ro. Suppose that (0Mo , 
satisfies Assumption 11. 1. Then

The crux of the proof is Ranicki [109], Proposition 1.8.2 ii) and
the underlying philosophical idea is the following: if M, N, and D are
compact oriented manifolds with boundary such that aM = aN = 9D
then M U D- - N U D- is cobordant to M U N-.

11.3. On the cut-and-paste invariance
of higher signatures on closed manifolds.

From Theorem 11.3 (b), we obtain the following corollary which
extends [72], Corollary 0.4, i.e Theorem 10.44 above, to more general
groups h .

COROLLARY 11.4. - Recall that n = 2m. Let M and N be two

oriented compact n-dimensional manifolds with boundary and let 0,V)
0M - aN be orientation preserving diffeomorphisrns. Let

(r : and (s : be cut-and-paste equivalent.
Assume that the r-covering associated to 0M - Br satisfies As-

sumption 11.1. Suppose furthermore that the assembly map p : 
Kn (Cr (r) ) is rationally injective. Then for all c E H* (Br, Q)
(11.5) sign(M N-, r; [c]) = sign(M U1/1 N-, s; [c]) -
In words, under the stated assumptions the higher signatures are cut-and-
paste invariant.

Proof. Since MR is assumed to be injective we know that the equal-
ity of the symmetric signatures implies the equality of all the higher sig-
natures, see Proposition 7.12. From Theorem 11.3 (b) we get immediately
the result. 0
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Remark. - We have already remarked that for groups having the
extension property the Map AR is injective. Thus Corollary 11.4 is indeed
a generalization of Theorem 10.44.

12. Higher spectral flow and cut-and-paste invariance.

In the subsections 10.10, 11.3 we have extended to the higher context
the index theoretic and topological proof of the cut-and-paste invariance
of the lower signature. The goal of this Section is to (briefly) present the
higher analogue of the third and last approach, the one employing the
notion of spectral flow. Our strategy is to show, analytically, that under
the same assumptions of Theorem 11.3 (b) above, the signature index
classes of two cut-and-paste equivalent coverings (r : M U~ N- --~ Br)
and (s : M Up N- ---7 BF) are equal in I~,~ (CT 1’) . By Proposition 7.11 this
will reprove Corollary 11.4.

We shall follow [79]. Notice that Michel Hilsum has also obtained
these results by using the Kasparov intersection product and a somewhat
different approach to boundary value problems in the noncommutative
context. See [52].

12.1. Higher spectral flow.

First of all we need a definition for the higher spectral flow. This
was defined in the family-case by Dai and Zhang, [34], and extended
to the noncommutative context by F. Wu [124] and Leichtnam-Piazza
[75] [79]. Let (N, s : N - BF) be an odd dimensional Galois covering
and let a generalized C*r T-linear Dirac operator. We assume that

0 in K1 (C;r). This is the case, for example, if (N, s : N -
BF) = (0M, ra : 8M ---7 BF), with (M, r : M --~ Br) a Galois covering
with boundary. According to Theorem 10.16 there exists spectral sections
for D~N,r) . Recall that given two spectral section Q and P, the difference
class [P - Q] E is well defined.

Assume now that we have a continuous one-parameter family of
such operators, parametrized by a continuous family of inputs (metrics,
connections, etc.); we denote by such a family. Recall that for

any C*-algebra A there exists an isomorphism U : K1 (CO ( ~0,1~ ; C) 0 
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K1(A) which is implemented by the evaluation map f .) 0 À -t f (0) A.
Using the above isomorphism Ll for A == one gets that the index
class associated to the operator vanishes in

~i(C~([0, l])(g)A). Thus according to Theorem 10.16 the family 
admits a (total) spectral section P = 

DEFINITION 12.1. - If Qo (resp. Q1) is a spectral section associated
with Do (resp. then the noncommutative (or higher) spectral flow

Qo, 61) from (Do, Qo) to (Di , 61) through the

Ko (C;r)-class:

This definition does not depend on the particular choice of the total
spectral section P = 

Theorem 1.4 in Dai-Zhang [34] proves that if F is trivial and 
Qo = n~(l), then the above definition agrees with the usual one

(net number of eigenvalues changing sign).
If the family is periodic (i.e. D1 = Do) and if we take Q1 = Qo then

the spectral flow Qo, does not depend on the choice of
Qo and defines a K-theory class which is intrinsically associated to

the given periodic family; we shall denote this class by 

More generally we can consider a periodic family of operators (D~ )
as above but acting on the fibers of a fiber bundle P - S’ with
fibers diffeomorphic to our manifold M. Also in this case there is a

well-defined noncommutative spectral flow E We

shall encounter an example of this more general situation in the coming
subsections.

12.2. The defect formula for cut-and-paste equivalent coverings.

The higher spectral flow fits into a variational formula for APS index
classes; this formula is the analogue of formula (3.7) in subsection 3.3.1.
Thus let (D(M,I) (U))uE[O,l] be a 1-paramater family of C;r-linear operator
on a covering with boundary. Let be the associated

boundary family. Fix a spectral section Qo for Ð(8M,ra) (0) and a spectral
section for D(aM,ra ) ( 1 ) . Then the APS index classes (1), Q1) and
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Qo) are well defined in and the following formula
holds:

Next, the gluing formula (3.9) given for the numeric indeces in subsubsec-
tion 3.3.3 can be extended to index classes. We state it directly for the
signature operator: if

’ 

is a classifying map, then

with P a spectral section for , This formula can be extended to

an oriented diffeomorphism. Using
these two formulae and proceeding as in the numeric case one can prove a
defect formula for the difference I

associated to two cut-and-paste equivalent coverings 7

THEOREM 12.4. - There exists a periodic family of twisted signa-
ture operators on F = 8M, such that

The family appearing on the right hand side of (12.5) is a S1-family
acting on the fibers of the mapping torus M(F, ~-1 0 ~) ~ ,S’1.

12.3. Vanishing higher spectral flow
and the cut-and-paste invariance.

The equality of the index class with the Mishchenko symmetric
signature, and the example given in section 9, show together that the right
hand side of formula (12.5) is in general different from zero. This is in

contrast with the numeric case. The following result is proved by making
use of the symmetric spectral sections we alluded to in subsection 10.7.
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THEOREM 12.6. - Let M and N be two oriented compact 2m-
dimensional manifolds with boundary and let 0,,o : : oM --&#x3E; 8N be

orientation preserving diffeomorphisms. We let F = 49M. Let

be cut-and-paste equivalent coverings.

Suppose that (8M, satisfies Assumption 10.19. Then

Consequently, by 12.4, the signature index classes of (r : M N- -t Br)
and (s : M Up N- -t BF) coincide. Thus, by Proposition 7.11, if the

assembly map is rationally injective then for all c E H* (Br, C)

13. Open problems.

I. Let (M, r) be an even dimensional oriented manifold with boundary
such that Assumption 10.19 (or 11.1 ) is satisfied. Then one observes that

the C*r T-valued symmetric signature class a (M, r) constructed in [73]
(see Subsection 11.1) and the signature index class of [72] 
(see Subsection 10.9.1) have the same gluing and homotopy invariance
properties. Moreover, when 9M - 0, these two classes coincide: see

Theorem 7.5. Therefore it is natural to conjecture that

II. Let (M,.F) and (N, 7’) be two foliated manifolds with boundary
such that the leaves are even-dimensional oriented and transverse to the

boundary. Then 7 has a product structure near 8M. One should try to
formulate for assumption analogous to 10.19 and then define
for (M, 7) a signature index class which should be a leafwise homotopy
invariant (see Baum-Connes [10] for the boundaryless case). Now let 0 and
~ be two diffeomorphisms from 0M to 0N sending a leaf of onto

a leaf of and preserving the orientation. Then one gets two closed
foliated manifolds (M and (M Up Let q denote the
common codimension of F4, and Fp and consider the two corresponding
Haefliger classifying maps (see [10], page 11):
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Then for each cx E H* (BFq, Q) one should try to compare

Remarks For the particular case of foliated bundles see the recent
paper [81].
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