We classify all finitely generated integral algebras with a rational action of a reductive group such that any invariant subalgebra is finitely generated. Some results on affine embeddings of homogeneous spaces are also given.
Nous classifions des algèbres intègres finiment engendrées munies d’une action rationnelle d’un groupe réductif connexe avec la propriété suivante : toute sous- algèbre -invariante est finiment engendrée. De plus nous obtenons quelques résultats sur les plongements affines des espaces homogènes.
Classification: 13A50, 13E15, 14L17, 14L30, 14M17, 14R20
Keywords: algebraic groups, rational -algebras, quasi-affine homogeneous spaces, affine embeddings
@article{AIF_2003__53_2_379_0, author = {Arzhantsev, Ivan V.}, title = {Algebras with finitely generated invariant subalgebras}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l'institut Fourier}, volume = {53}, number = {2}, year = {2003}, pages = {379-398}, doi = {10.5802/aif.1947}, zbl = {1099.13500}, mrnumber = {1990001}, language = {en}, url = {http://www.numdam.org/item/AIF_2003__53_2_379_0} }
Arzhantsev, Ivan V. Algebras with finitely generated invariant subalgebras. Annales de l'Institut Fourier, Volume 53 (2003) no. 2, pp. 379-398. doi : 10.5802/aif.1947. http://www.numdam.org/item/AIF_2003__53_2_379_0/
[Ak77] Dense orbits with two ends, Izv. Akad. Nauk SSSR, Ser. Mat (in Russian), Tome 41 (1977) no. 2, pp. 308-324 | MR 472848 | Zbl 0373.14016
[Ak77] Dense orbits with two ends, Math. USSR-Izv. (English trans.), Tome 11 (1977) no. 2, pp. 293-307 | Zbl 0378.14009
[AT01] Affine embeddings with a finite number of orbits, Transformation Groups, Tome 6 (2001) no. 2, pp. 101-110 | Article | MR 1835666 | Zbl 1010.14011
[BB92] Sous-groupes épimorphiques de groupes linéaires algébriques I, C. R. Acad. Sci. Paris, Série I, Tome 315 (1992), pp. 649-653 | MR 1183796 | Zbl 0767.20017
[Br89] Groupe de Picard et nombres caractéristiques des variétés sphériques, Duke Math. J, Tome 58 (1989) no. 2, pp. 397-424 | MR 1016427 | Zbl 0701.14052
[Gr97] Algebraic Homogeneous Spaces and Invariant Theory, Springer-Verlag, Berlin, LNM, Tome 1673 (1997) | MR 1489234 | Zbl 0886.14020
[Ho69] Fixed point schemes of additive group actions, Topology, Tome 8 (1969), pp. 233-242 | Article | MR 244261 | Zbl 0159.22401
[Hu75] Linear Algebraic Groups, Springer-Verlag, New-York, Grad. Texts in Math, Tome 21 (1975) | MR 396773 | Zbl 0471.20029
[Ke78] Instability in invariant theory, Ann. of Math, Tome 108 (1978) no. 2, pp. 299-316 | Article | MR 506989 | Zbl 0406.14031
[La99] Homogeneous spaces of compact connected Lie groups which admit nontrivial invariant algebras, Journal of Lie Theory, Tome 9 (1999), pp. 355-360 | MR 1718227 | Zbl 1023.22013
[LR79] A generalization of the Chevalley restriction theorem, Duke Math. J, Tome 46 (1979) no. 3, pp. 487-496 | Article | MR 544240 | Zbl 0444.14010
[LS03] Variations on a theme of Steinberg, Journal of Algebra, Tome 260 (2003), pp. 261-297 | Article | MR 1973585 | Zbl 1054.20026
[Lu73] Slices étales, Bull. Soc. Math. France, Paris, Tome Mémoire 33 (1973), pp. 81-105 | Numdam | MR 342523 | Zbl 0286.14014
[Lu75] Adhérences d'orbite et invariants, Invent. Math, Tome 29 (1975), pp. 231-238 | Article | MR 376704 | Zbl 0315.14018
[McN98] Dimensional criteria for semisimplicity of representations, Proc. London Math. Soc (3), Tome 76 (1998), pp. 95-149 | Article | MR 1476899 | Zbl 0891.20032
[Po75] Classification of three-dimensional affine algebraic varieties that are quasihomogeneous with respect to an algebraic group, Izv. Akad. Nauk SSSR, Ser. Mat. (in Russian), Tome 39 (1975) no. 3, pp. 566-609 | MR 376702 | Zbl 0308.14009
[Po75] Classification of three-dimensional affine algebraic varieties that are quasihomogeneous with respect to an algebraic group, Math. USSR-Izv. (English trans.), Tome 9 (1975), pp. 535-576 | Article | MR 376702 | Zbl 0331.14026
[PV72] A certain class of quasihomogeneous affine algebraic varieties, Izv. Akad. Nauk SSSR, Ser. Mat (in Russian), Tome 36 (1972), pp. 749-764 | MR 313260 | Zbl 0248.14014
[PV72] A certain class of quasihomogeneous affine algebraic varieties, Math. USSR-Izv. (English trans.), Tome 6 (1972), pp. 743-758 | Zbl 0255.14016
[PV89] Invariant Theory, VINITI, Moscow, 1989 (Itogy Nauki i Tekhniki, Sovr. Problemy Mat. Fund. Napravlenia (in Russian)) Tome vol. 5 (1989), pp. 137-309 | Zbl 0735.14010
[PV89] Invariant Theory, Algebraic Geometry IV, Springer-Verlag, Berlin (Encyclopaedia of Math. Sciences (English trans.)) Tome vol. 55 (1994), pp. 123-278 | Zbl 0789.14008
[Ri77] Affine coset spaces of reductive algebraic groups, Bull. London Math. Soc, Tome 9 (1977), pp. 38-41 | Article | MR 437549 | Zbl 0355.14020
[Su88] Description of the observable subgroups of linear algebraic groups, Mat. Sbornik (in Russian), Tome 137 (1988) no. 1, pp. 90-102 | MR 965881 | Zbl 0663.20043
[Su88] Description of the observable subgroups of linear algebraic groups, Math. USSR-Sb. (English trans.), Tome 65 (1990) no. 1, pp. 97-108 | Article | MR 965881 | Zbl 0663.20043