We classify all finitely generated integral algebras with a rational action of a reductive group such that any invariant subalgebra is finitely generated. Some results on affine embeddings of homogeneous spaces are also given.
Nous classifions des algèbres intègres finiment engendrées munies d’une action rationnelle d’un groupe réductif connexe avec la propriété suivante : toute sous- algèbre -invariante est finiment engendrée. De plus nous obtenons quelques résultats sur les plongements affines des espaces homogènes.
Keywords: algebraic groups, rational $G$-algebras, quasi-affine homogeneous spaces, affine embeddings
Mot clés : groupes algébriques, $S$-algèbres rationnelles, espaces homogènes quasi-affines, plongements affines
@article{AIF_2003__53_2_379_0, author = {Arzhantsev, Ivan V.}, title = {Algebras with finitely generated invariant subalgebras}, journal = {Annales de l'Institut Fourier}, pages = {379--398}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {53}, number = {2}, year = {2003}, doi = {10.5802/aif.1947}, mrnumber = {1990001}, zbl = {1099.13500}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1947/} }
TY - JOUR AU - Arzhantsev, Ivan V. TI - Algebras with finitely generated invariant subalgebras JO - Annales de l'Institut Fourier PY - 2003 SP - 379 EP - 398 VL - 53 IS - 2 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.1947/ DO - 10.5802/aif.1947 LA - en ID - AIF_2003__53_2_379_0 ER -
%0 Journal Article %A Arzhantsev, Ivan V. %T Algebras with finitely generated invariant subalgebras %J Annales de l'Institut Fourier %D 2003 %P 379-398 %V 53 %N 2 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.1947/ %R 10.5802/aif.1947 %G en %F AIF_2003__53_2_379_0
Arzhantsev, Ivan V. Algebras with finitely generated invariant subalgebras. Annales de l'Institut Fourier, Volume 53 (2003) no. 2, pp. 379-398. doi : 10.5802/aif.1947. http://www.numdam.org/articles/10.5802/aif.1947/
[Ak77] Dense orbits with two ends, Izv. Akad. Nauk SSSR, Ser. Mat (in Russian), Volume 41 (1977) no. 2, pp. 308-324 | MR | Zbl
[Ak77] Dense orbits with two ends, Math. USSR-Izv. (English trans.), Volume 11 (1977) no. 2, pp. 293-307 | Zbl
[AT01] Affine embeddings with a finite number of orbits, Transformation Groups, Volume 6 (2001) no. 2, pp. 101-110 | DOI | MR | Zbl
[BB92] Sous-groupes épimorphiques de groupes linéaires algébriques I, C. R. Acad. Sci. Paris, Série I, Volume 315 (1992), pp. 649-653 | MR | Zbl
[Br89] Groupe de Picard et nombres caractéristiques des variétés sphériques, Duke Math. J, Volume 58 (1989) no. 2, pp. 397-424 | MR | Zbl
[Gr97] Algebraic Homogeneous Spaces and Invariant Theory, LNM, 1673, Springer-Verlag, Berlin, 1997 | MR | Zbl
[Ho69] Fixed point schemes of additive group actions, Topology, Volume 8 (1969), pp. 233-242 | DOI | MR | Zbl
[Hu75] Linear Algebraic Groups, Grad. Texts in Math, 21, Springer-Verlag, New-York, 1975 | MR | Zbl
[Ke78] Instability in invariant theory, Ann. of Math, Volume 108 (1978) no. 2, pp. 299-316 | DOI | MR | Zbl
[La99] Homogeneous spaces of compact connected Lie groups which admit nontrivial invariant algebras, Journal of Lie Theory, Volume 9 (1999), pp. 355-360 | MR | Zbl
[LR79] A generalization of the Chevalley restriction theorem, Duke Math. J, Volume 46 (1979) no. 3, pp. 487-496 | DOI | MR | Zbl
[LS03] Variations on a theme of Steinberg, Journal of Algebra, Volume 260 (2003), pp. 261-297 | DOI | MR | Zbl
[Lu73] Slices étales, Bull. Soc. Math. France, Paris, Volume Mémoire 33 (1973), pp. 81-105 | Numdam | MR | Zbl
[Lu75] Adhérences d'orbite et invariants, Invent. Math, Volume 29 (1975), pp. 231-238 | DOI | MR | Zbl
[McN98] Dimensional criteria for semisimplicity of representations, Proc. London Math. Soc (3), Volume 76 (1998), pp. 95-149 | DOI | MR | Zbl
[Po75] Classification of three-dimensional affine algebraic varieties that are quasihomogeneous with respect to an algebraic group, Izv. Akad. Nauk SSSR, Ser. Mat. (in Russian), Volume 39 (1975) no. 3, pp. 566-609 | MR | Zbl
[Po75] Classification of three-dimensional affine algebraic varieties that are quasihomogeneous with respect to an algebraic group, Math. USSR-Izv. (English trans.), Volume 9 (1975), pp. 535-576 | DOI | MR | Zbl
[PV72] A certain class of quasihomogeneous affine algebraic varieties, Izv. Akad. Nauk SSSR, Ser. Mat (in Russian), Volume 36 (1972), pp. 749-764 | MR | Zbl
[PV72] A certain class of quasihomogeneous affine algebraic varieties, Math. USSR-Izv. (English trans.), Volume 6 (1972), pp. 743-758 | Zbl
[PV89] Invariant Theory, VINITI, Moscow, 1989 (Itogy Nauki i Tekhniki, Sovr. Problemy Mat. Fund. Napravlenia (in Russian)), Volume vol. 5 (1989), pp. 137-309 | Zbl
[PV89] Invariant Theory, Algebraic Geometry IV (Encyclopaedia of Math. Sciences (English trans.)), Volume vol. 55 (1994), pp. 123-278 | Zbl
[Ri77] Affine coset spaces of reductive algebraic groups, Bull. London Math. Soc, Volume 9 (1977), pp. 38-41 | DOI | MR | Zbl
[Su88] Description of the observable subgroups of linear algebraic groups, Mat. Sbornik (in Russian), Volume 137 (1988) no. 1, pp. 90-102 | MR | Zbl
[Su88] Description of the observable subgroups of linear algebraic groups, Math. USSR-Sb. (English trans.), Volume 65 (1990) no. 1, pp. 97-108 | DOI | MR | Zbl
Cited by Sources: