Gaps between consecutive divisors of factorials
Annales de l'Institut Fourier, Volume 43 (1993) no. 3, p. 569-583

The set of all divisors of n!, ordered according to increasing magnitude, is considered, and an upper bound on the gaps between consecutive ones is obtained. We are especially interested in the divisors nearest n! and obtain a lower bound on their distance.

On étudie l’ensemble de tous les diviseurs de n! dans l’ordre croissant, et l’on obtient une borne supérieure pour les écarts entre deux diviseurs consécutifs. Nous obtenons une borne inférieure pour la différence entre les deux diviseurs les plus proches de n!.

@article{AIF_1993__43_3_569_0,
     author = {Berend, Daniel and Harmse, J. E.},
     title = {Gaps between consecutive divisors of factorials},
     journal = {Annales de l'Institut Fourier},
     publisher = {Imprimerie Louis-Jean},
     address = {Gap},
     volume = {43},
     number = {3},
     year = {1993},
     pages = {569-583},
     doi = {10.5802/aif.1348},
     zbl = {0790.11007},
     mrnumber = {94k:11107},
     language = {en},
     url = {http://www.numdam.org/item/AIF_1993__43_3_569_0}
}
Berend, Daniel; Harmse, J. E. Gaps between consecutive divisors of factorials. Annales de l'Institut Fourier, Volume 43 (1993) no. 3, pp. 569-583. doi : 10.5802/aif.1348. http://www.numdam.org/item/AIF_1993__43_3_569_0/

[1] D. Berend and C.F. Osgood, On the equation P(x) = n! and a question of Erdös, J. of Number Theory, 42 (1992), 189-193. | MR 93e:11016 | Zbl 0762.11010

[2] P. Erdös, Some problems and results in number theory, Number Theory and Combinatorics, Japan 1984, World Scientific, Singapore, 1985, 65-87. | Zbl 0603.10001

[3] P. Erdös, Some problems and results on additive and multiplicative number theory, Analytic Number Theory, (Philadelphia, 1980), Springer-Verlag Lecture Notes, 899 (1981), 171-182. | Zbl 0472.10002

[4] P. Erdös, Some solved and unsolved problems of mine in number theory, Topics in Analytic Number Theory, University of Texas Press, Austin, 1985, 59-75. | MR 804242 | Zbl 0596.10001

[5] P. Erdös, Personal communication.

[6] R R. Hall and G. Tenenbaum, Divisors, Cambridge University Press, Cambridge, 1988. | MR 90a:11107 | Zbl 0653.10001

[7] M. Queffélec, Substitution Dynamical Systems - Spectral Analysis, Springer-Verlag Lecture Notes, 1294, Berlin, 1987. | MR 89g:54094 | Zbl 0642.28013

[8] G. Tenenbaum, Sur un problème extrémal en arithmétique, Ann. Inst. Fourier, Grenoble, 37-2 (1987), 1-18. | Numdam | Numdam | MR 88k:11004 | Zbl 0622.10030

[9] M.D. Vose, Integers with consecutive divisors in small ratio, J. of Number Theory, 19 (1984), 233-238. | MR 86c:11003 | Zbl 0543.10031

[10] M.D. Vose, Limit theorems for divisor distributions, Proc. Amer. Math. Soc., 95 (1985), 505-511. | MR 87i:11126 | Zbl 0609.10041

[11] M D. Vose, The distribution of divisors of N!, Acta Arith., 50 (1988), 203-209. | MR 89j:11082 | Zbl 0647.10038