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GAPS BETWEEN CONSECUTIVE DIVISORS
OF FACTORIALS

by D. BEREND and J.E. HARMSE

1. Introduction and main results.

Given a positive integer TV, let r = r(N) be its number of divisors,
denoted by

1 = c?i < d'2 < . . . < dr = N .

Erdos [3] has defined a family of arithmetic functions

(i) ^(^-Ef^-1)1^ ^^i=i ^ ai ^
and conjectured that

liminfF^An < oo, e > 0.
N^oo

(See also [4] for related results and problems.) The conjecture was proved
by Vose [9], who was able to construct a sequence (A^)^^ such that

(2) F,(^)=0,(l).

It is clear that to obtain small values for F^{N) one needs numbers N
with "many" divisors. In fact, the sequence (A^) constructed by Vose is a
divisor sequence, i.e., TVjA^+i for each n. This was anticipated in [2] and
[3], where Erdos specifically suggested the sequences

(3) F={n\)^
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(4) £=( [ l , 2 , . . . , n ] )

(where [ l , 2 , . . . , n ] denotes the least common multiple of all positive
integers not exceeding n) and

/n-i \
(5) 7Z= NJ^

\i=l )

(where pi < p^ < ... is the sequence of all primes) as candidates to satisfy
(2). This was established by Tenenbaum [8], whose results actually apply
to a large class of sequences satisfying a few conditions. Moreover, instead
of the sum in (1), he considered the more general sum

T-lw^i^-O(6) F(A^)=^
1=1

where the function h : [0, oo) —> [0, oo) belongs to a certain class,
containing in particular the functions x i—^ x1^6 tackled by Vose.

The main portion of Tenenbaum's paper establishes, for each of
the sequences F,fL and 7^, a good upper bound on the ratios between
consecutive divisors of elements of the sequence. By symmetry, it suffices
to deal with the divisors below ^/~N~n • For divisor sequences, as the interval
[1,^/Nn] is covered by the intervals [^/~Nj~[^ ^/Nj]^ J < ^ one needs
only consider the interval [\/A^_i, v/A^]. Tenenbaum proved (for each

of the three sequences) that, given any f3 < -, for any sufficiently large

n and -\/A^-i < z < \/~N~n there exist (many) divisors d of Nn with
^ <: d < (1 ̂ -n^1117^ ) z . (Some aspects of his general approach are treated
in more detail in [6].)

In this paper we deal, prompted by a question of Erdos [5], with
the density of the divisors of n\, mainly near the "center" \/~n\ . To state
our results, let us introduce the following definitions and notations. A

yfactorization ratio for I € N is a number of the form — where x, y are
x

positive integers and I = xy. The gap for n e N is Mn = mn^a — 1 :
a a factorization ratio for n\, a > 1}. Finally, we shall write \gt for log^

(i.e., ̂ ). (In particular, Ige = ̂ .)

THEOREM 1. — For n ̂  216,

^-^)^+lge . . ̂ -lg(lgn)

M^IO8;-^) < ( - )
\ n \n
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We will in fact prove a more general result of a type suggested by
Tenenbaum's work.

THEOREM 2. — For 72 > 216 and ^{n - 1)! < D ^ Vn\, there is a
divisor x of n\ such that

I-l<..10'^"-^+•i•<fl)¥-]8([t">

D \ n ) - \n)

Theorem 1 is almost the special case in which D = v^ . We shall
prove the theorems simultaneously.

Remark L — The first inequality in each theorem is true with a
slightly larger constant for n > 28, but we confine formal statements for
small n to Lemma 1 and Proposition 1.

Remark 2. — Up to a bounded power of Ign, the theorems above
are the best our methods can produce without radical modification. The
reason for this is that our approach yields upper bounds of the form
2^ "^(A'-l)!^"^, which attains its minimum (for fixed n) when 2kk w n,
and then has approximately the value given above. The large constants arise
because we are not quite able to obtain the bound with the optimum value
of k. (Again, see Proposition 1.)

We may view Theorem 2 as a "topological" statement regarding
the density of divisors of n\. One may also inquire about the "measure
theoretical" analogue, namely how the finite sequence of all divisors of n\
is distributed (after appropriate normalization) as n becomes large. This
question was pursued by Vose [11] (following another paper [10], discussing
aspects of this problem for general divisor sequences). As one might expect,
his results cannot be used to recover the results of this paper (or even
Tenenbaum's). He finds the limiting distribution of the discrete probability
measures obtained from the set of logarithms of all divisors of n!, along
with some estimate on the error. Roughly speaking, for this to imply that
a certain interval contains a divisor of n!, the interval needs to be larger
than the error. However, the error term does not decay sufficiently fast, so
that the results of [9] do not imply even the existence of a constant c such

that the interval ——:, c\fri\\ must contain a divisor of n!. Of course, our
V c \

results do not imply those of [11].

One should note that our approach to proving Theorems 1 and 2 is
totally different from Tenenbaum's. While improving his upper bounds for
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n\ (and being able to provide similar bounds for other sequences consisting
of "regular" products), our method does not apply at all to the other
sequences, C and 7 .̂, for which his method worked more easily than for
J-'. Moreover, the improvement we obtain regards being able to find a
divisor of n\ in a smaller interval; he finds, in a bigger interval, many
more divisors. On the other hand, throughout the proofs of Theorems 1
and 2 only "special" divisors of n!, i.e., divisors of the form a^acz...al,
where 1 < a\ < 02 < . . . < di < n^ are used, so we actually prove the
existence of such divisors within the specified ranges. We also mention that
our results can probably be exploited to extend the class of functions h for
which Tenenbaum proved the boundedness of (6) along the three sequences
he considered (of course, we could do it only for ^r), but we shall not pursue
this direction here.

Another question Erdos asked [5] was about lower bounds for the
gap between consecutive divisors of n\ near ^/nt. It will be convenient to
formulate our results in this direction with slightly different notations from
those for the upper bounds. Thus, consider for each n the "most balanced"
factorization of n\ into a product of two positive integers,

n\ = Inhn 7 {In < vnl <, hn^ hn — In minimal ).

A sequence {xn)'^=^ converges in density to re, and we write Xn —^ x^
if Xn —> x but for a subsequence of zero asymptotic density.

THEOREM 3. — For any a C N the set {n e N : hn - In = a} hsis
zero asymptotic density. In other words

, , D
i^n — ^n ——>t C^'

THEOREM 4. — hn — In > V^ f01 infinitely many positive integers
n, and a fortiori

h^ — In = ̂ t{^/n).

The upper and lower bounds we obtain are very far from each other.
The behaviour of the number of divisors of n\ as a function of n, which is
"almost exponential", seems to hint that neither of these theorems is close
to the best possible.

In Section 2 we prove Theorems 1 and 2, and in Section 3 we prove
Theorems 3 and 4.
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We wish to express our gratitude to P. Erdos, G. Kolesnik, C. Osgood,
and M. Vose for discussions and information related to the problems
discussed in this paper. We also thank the referee for numerous helpful
comments, and especially for the proof he gave for Lemma 2, which is
much more elegant than our original proof and, at the same time, gives a
slightly better estimate. This stimulated us to re-examine the arguments
leading to Theorems 1 and 2, finding that the results could be improved
by more careful handling of the inequalities. (A slight improvement of
Proposition 1 followed directly from the improvement of Lemma 2. Further
improvement could be made, but the statement and proof would become
more complicated.)

2. Upper bounds.

To obtain a divisor of n\ close to a given number D, we shall construct
n\lD x

a factorization ratio a close to ——: then a = - where y is a divisor of
D y

( n\\
n\ close to D. Given the target value A( = —^ ) of the ratio, we estimate

Mn,A = mkK In ( — ) : a a factorization ratio for n\ >.
I \^1/ J

It will be convenient to use the notation

a1^ = ~f~~\ ? t > 15

and
a^i,^^^ ^ N , t > 2 ^

^k.t

The factorization ratios will be constructed by a variant of the greedy
algorithm, using the numbers ak,n- The point is that if a is a factorization
ratio for (72—2^)! (n, k C N, n > 2k) then aa/^n and (y.a~^\ are factorization
ratios for n\. The greedy algorithm is to find a as close as possible to the
target and then take either aa^^n or aakln as t^e "g°°d" factorization ratio

for n\. Since — < Inai n < ——— and V — diverges it is easy to use ai ( \
n ' n — 1 n "

to show that Mn A = 0{ — ) a s n — ^ o o for every fixed A > 0. In particular,
W

one can show that Mn i ^ ——— for n >, 7. The first difficulty is that the
' n — 1
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result is not uniform in A. In the proof of Theorem 2, A could be as big as
n, but the greedy method already breaks down for A % ^/n, since then

^ In ai^ ^ . In n ^ In A.
2^m<n

ri,=n(mod 2)

(7)

LEMMA 1. — Jfn > 4 and 1 < A ^ n 4-1, then :
. 2M <n.A ^

Proof. — The reader may readily list the divisors of and factorization
ratios for 4! and 5! to confirm the result for n e {4, 5}. (It is also easy to
see that the conclusion fails for n = A = 3.)

Take n > 5 and assume that for m e {n-2,n-l} and 1 < A < m+1,

Mm,A < —. Suppose A ^ n - 1. Then there is a factorization ratio am
a

for (n - 2)! with In- ^ ——— so there is /? € {aa^aa^} with
-/i 77; ^ 5

1 2 1^ a 2
^n - l ' n -2 n j ~ n '

In — ± In ai^ < max--/i

Now suppose n - l < A < n + l . Choose a factorization ratio a for
n-1 with | lna| = M^-i^i. Then na and no"1 are factorization ratios for n.

For some /3 <E {no:, no"1}, In '—
^\ I n — ± In a < max^ In n J Inal ^

A t| A J

Since [ I n — < -, it remains only to check that Mn-\ i < -. For n > 8yi n ' n ~
this is clear since Mn-i^i < ——. by the remarks above. To complete the

Ti — Zj

proof, observe that A^i = In — < \ < 2 and M^ = In 30 < x < 2.
1U 5 6 ' 24 4 7

Set :
c,^^2-^2^-!)!

for k G N. (Note that c/,+i = 2^^^.)

LEMMA 2. — For A; C N and ^ > 2A;+1A• :

(8) O^lna^-c^-^cfc+i^-1.

A routine calculation yields the first two terms in the Laurent series,

showing that Ina^, = c^ + ̂ -1 - J^c^-^-1 + 0(^-^-2). Since

Cfc+i = ^kck, it follows that the lemma is essentially sharp.
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Proof. — Put Fk{t) == Ina^. A standard induction yields :

2fc-l

Fk(t) = (-if'1 ̂  (-l)^) ln(^ - m), k >_ 1, t > 2^
m=0

where a(m) is the sum of digits in the binary representation of m.
(Alternatively, we may reduce a(m) modulo 2 and obtain the well-known
Thue-Morse sequence - see, for example, [7, p. 73].) Setting

2^-1

>k{n)= ̂ (-l^m", n>0,
m=0

we obtain

F,(t) = (-l)^-i ̂ (-l)^) (ln(+ln(l - ̂ ))
m=0

^-D-E'H^'f-.-I;^^")
m=0 \ n=l /

= (_l)^-iAfe(0) In* + (-1)" ̂  M!)^-".
7T-

n=l

To calculate the coefficients \kW we employ generating functions :

00 n 2 A ; —1 00 n -n

EW^'EW-'E'",^
n=0 rn=0 n=0

2^-1
= Y^ (_^y(rn)^mx

m=0

=n(i-^)
J=0

k-1 oo / • ^

- ( i ^TTV l /
-(-1) 112^—^—

j==0 /z=l

Opening up we find that Afc(n) = 0 for n < k and

00

Fk(t)=^^k(n)t-n,
n=fc
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where

1 1 /c-l

7fc(n) =— - n\ V^ ————————— TT 9,^3n ^A.-^/^°!/^l!•••^-l'n
min hj>l

=("-D! r 1 n 2J(M3+1)
,^+..^_^_. "o'yi!.. .ufc-i! ̂  u, + 1

min it^ >0

_(n-l)\ ^ / n-A: \ Mfc-i) pr 2W

^-^'^^..^.^ ^o^i,..., ̂ -i7 2 y^TT
minuj->0

^ (n-l)!^M^ y^ / n - f c \ n^o^3'̂
(n - fc)! .o^i+.——.-,=n-t ^0, "1, . . - ,^-1; ̂ ^o1 U, + 1

minuj>0

(n — 1)! fc( fc - i ) , ,
'(rTriTT).2"^1^--^2)
- (n-1)' 2^-^^ IP^- ( n _ f c + l ) l 2 (2 -1) •

2* — 1Setting z = ———, we obtain :

E ̂ -^ E ̂ F^^^-^t-
n=k+l n ^ k + l ^ ' ^ ' ^ -

k(k-i) , , "_ fn _ 1 1 1= 2 - - ( 2 f c - l ) - f c y" _1"__'_'_^
— , ("-fc+l)! 'n==A;+l v /

Now :

f; ^-^ n=^-i)^ y (n-1)' ,n- î
^("-fe+l)' J^-1)!("-A-+1)!"

rz 00 ( 1 \ i

=(fc-l)!^-1 / E ^ ^ ^^""^^ ^(fc-l)!(n-fe)!

=(fe-l)!^-1 /"((l-^^-nd.r
-'o

^^-l)!^-^^^,
where

Gk(y)= r^l-x^-l^dx.
Jo
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By Taylor's Theorem,

G^^GkW+zG.W+^G^x)

z2

=0+z•0+—k(l-x)~k~l

for some x between 0 and z. Since (l-a:)"^'"1 < (l-z)"^1 < 2, it follows
that

00 00 , ^.

^ 7^-" ̂  2^V - 1)-^ ^ 7^——^"
^ ( n - f c+ l ) ! '

n==fc+l v /n=k+l

f c ( f c - i )
< 2—^—(2 /c - 1)-^ - l)!^-1^2

fc(fc-i
=2-^(2k-l)-kk\zk+l

^-1'fc ( fc - l )
=2—2—(2 f c-l)- / l ;A;!

/c+l

fc ( fc - l )
= 2-^(2^ - l)^-^-1 < Cfc+i^-^-1.

This completes the proof of Lemma 2.

PROPOSITION 1. — Suppose k,n C N, n > rik = 2/t;+5A•, and
1 <, A < n + 1. Then M^A ^ clc},n~k.

Proof. — We will use induction on k. Lemma 1 is a better result for
k = 1. The induction step will be given in detail for k > 3 and we shall
sketch the modifications required for k G {1,2}. Take k > 3 and assume
that for n^rik and 1 ̂  A < n+1, Mn,A <: ^c^n~k. The first step is to show
that a similar inequality also holds for n ^ A < n2 provided n > nk + 1.
Indeed for such A and n there is a factorization ratio a for (n — 1)! with

^c^-l^Ocfcn-^

i a

^A/n

ratio for

^ 2cfc(r

n! with

-i-l)-

, na
\ "nln A

-fc. (3f cours

1 a

^A/n
Now take n > n^i and suppose 1 < A < n-\-1. Choose m as small as

77-
possible with m > - and m = n(mod2A;). Since m > rik + 1 and A < m2,

there is a factorization ratio ao of m\ with In 0^ ^ 3ckm~k. Define o^ (a
-/i

factorization ratio for (m + 2^)!) recursively for / G N by

ai = ' ^-1^,^+2^^ if^-i < A,
.^-1/^,771+2^ if^-i ^ A.
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Then for lo = (n—m)^1^, (3o = a^ is a factorization ratio for n\. The plan is
to modify /?o to obtain a factorization ratio suitably close to A. The obvious
modification is to replace a term of the form a^ ,^1 m the expansion for
o^o by its reciprocal, but this is too drastic and must be moderated by
the opposite action on another term. If the terms are adjacent then this
adjustment is exactly multiplication or division by aj y^/.

Since Ina/^ > c^"^ In — < In 0^+2^ f011 I > 3- (This follows
Yd.

because In 0^+2/0 +m(2/c,m+2•2fc +m^,m+3•2^ > 3 In 0/^+3.2/0 > 3c/,(m+
3 • 2A;)-/C > 3e~l^loCkm~k > 2ckm~k. This and similar estimates are used
throughout the proof.) For I > 1, not all three numbers In a/, Ino^+i, and
lnc^+2 can be on the same side of In A. Set 5+ = {l e { 2 , 3 , 4 , . . . ,^0} :

ai = ̂ i^^m^^i-i^k^m^i} a^ let S- = {l C { 2 , 3 , 4 , . . . , / o } •• <^i =
Q /^-2^A:,m+2 f c(^-l)a^.2fc^}• Define factorization ratios /3j of n\ recursively

as follows : Suppose f3j = /3o ]"[ afc+lm+2 f c^ where <7(/) = 1 (resp.

a{l) = -1) if / e 5'+ (resp. l G 5-) and ^-+1 > 2 + ^-. If /3j > A

and there is / € *S'- Ft {lj + 2 ,^ j + 3,...} with 0^+1^+2^ < "r th611
^i

/3j+i = 0j^2 rn+^i where Zj+i is the least such l. Similarly if f3j < A
^

and there is l G S^. D {Z j + 2, ^j + 3,...} with a/e+i ^+2^^ < ~r~ tnen

PJ
/3j4-i = / 3 j a 2 - ^ , ^ k ^ where lj^\ is the least such l. Let Jo be the
largest J for which lj can be found. We claim that /3/y is a factorization

ratio for n! with In ' ^ < 2cfcn-/l;.
A

An induction shows that for J c { l , 2 , . . . , J o } there is a factorization
ratio aij of (m + 2^j)! such that f3j = a^—°-. It follows that /3j is a

o^ij
factorization ratio for n! for every J. The rest of the proof verifies the

upper bound for In —°- .
-/i

The approximate alternation between multiplication and division in
the construction of /?o from ao implies that 5+ and S- cannot be very
sparse. More precisely, each of them has a point in {2,3,4,5,6}, and
for every l 6 S+ U 6'-, if / < IQ — ^) then 64- and S- both intersect
0 + 2 , < + 3 , ; + 4 , Z + 5 } .

If Jo = 0 then — ^ a^+i ̂ rn^i for every l C 6+ and —) < a^+i rn^i
Po A '

for every l e 6-. Since (by inequalities below) this leads to the estimate
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claimed, assume Jo > 0.

Suppose that for every J G { l , 2 , . . . , J o L In ^
A

> ak-{-l,m-[-2klJ•

Then the numbers In — all have the same sign : assume first that they are
Yi

all positive. Since a^+i^.) is a decreasing function, In — > dk+i.m^i
A

for I ^ I j , so by the construction, { ^ , ^ , . • • , ^ 0 } = 5-n{^, ̂  + 1 , . . . , ̂ }.
Suppose that S- H {2, 3 , . . . . ̂  - 1} is nonempty and let I be the greatest

element. Then In-j < m^+i,m+2^ < 3 In 0^1^+2^ (since /i < ^ + 5),
contrary to assumption. It follows that {li^h, " • ,ljo} = S-, so

Jo
In^

A - 2^ ln ̂ +1^+2^7
J=l

= 2 ̂  mc^+i^+2^
les-

^2^Cfc+l(m+2 f cO- f c- l

ZC5-

> 2 ^ ^+1(^+2^)-
6^;^;Q

(=1 (mod 5)

^ j f ° Ck+l(m+2kt)-k-ldt
0 J6

2^
5

2cfe

=- f c((m+6•2 f c)- f c

0

- 5

> 2c/cn'

> ln^,n.
This contradicts the estimates for ai. The assumption that the numbers
In -— are all negative leads to a similar contradiction.-/i

The penultimate inequality in the calculation above uses the assump-
tion that k ^ 3. For k G {1,2}, it is important that m can be chosen
substantially less than n/2. (This is possible because the results for small
k are better than those stated.) We see that M^.A < 4n~2 = 2c2n~2 for
n > 160, l < A < n + l b y choosing m w \/n + 1 congruent to n mod-

77ulo 4 in case k = 1. In the case k = 2, we choose m % — . Note that
o

for large k we could take m substantially greater than n/-2 and still have
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(m + 7 • 2k)~k — n~k > 4n~/c. We leave it to the interested reader to verify
that for large k and n > 2fc+3A:, i f l < A ^ n + l then M^A < ̂ n~k.

By the result above, there is J e {1, 2 , . . . , Jo} such that In — <
A

ak+l,m-}-2klJ• For any such J < Jo? the argument used above to show that

/i is the least element of 5'- shows that In

by induction

/w-<— < ̂ +1^+2^+1 • Thus

ln^A ^ ̂ ^n^^ ^ ^^-i^-s^^ < 2c/.;+ln/i;+l.

Proposition 1 follows.

Proof of Theorems 1 and 2. — Let n > 216 be given and suppose
r^

-\/(n- 1)! < D < Vn?. Set A = —^ G [l,n]. By the definitions, there
Q.

is a factorization ratio a for n! with In— = M^A- The first step is to^i
estimate M^A-

Define k(> 8) by the equation 2fc+5A: = n, let k be the integer part of
k, and s e t t = k - k , so that 2/C+5A; < 2/l;+t+5A• < n < 2A;+6(Al + 1). Then by
Proposition 1,

Mn,A < clWk

=2'2^2-k^2{k-l)\n-k

< 2(2/C)^-1)/2^27^(A; - l^-V^-n^-ry^
i / n \(^- i) /2^(^-i)-(^ v /2^e l-<;+A(fc-l) fc7^- fc

,(l-fe)/2

< 21+^7-5^^7rel/842-(t+5)fc/2e-fc fc^-'
.",

< 2^5^27^77el/84(2-fc)lee+m f^)
\n)

fcMge+l±S / fe\

W
lge+^

<2^V/.77e^f26(fc+l))
\ " /

<2222t^77e6-^ffc± l^
\ ra 7

(fc+l)/2

R-1/2 ' f c + 1

, n

(fc+l)/2
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fe+t+6 i i

i 4_i_4i /A:+<+5^^+ lge
< 2"V7r/72^e 2 84

fc+t+6 , i
,_ .u/ fc+t+5^——+^< 22V7^/7e4-M

O.S.IO^^^^166

n
fc+t+6

Now A " + t + 6 = A : + 6 > l g n - Ig(lgn) + 1 and k-{-t-\-5=k-\-5<: Ign, so

nrA^
lgTZ-lg(lg7z)+l ^ ^

M^A < 9.5 • 10' n
Moreover, since n > 216 > 2 • 27, M^,A < 4n~2 < 2~30, so e^^ < 1.01.

/nT
Let x = \ — , which is a divisor of n\. Then by the estimates above

V Q.
T / 1 T I \
^-lSexp(|ln^|)-l

- e x p Q l n ^ ) - !

^ gM,,A/2 _ ^

^ Mn,A^M^

< 5 - 10>7 ^g^
lgn-lg(lgn)+l ^ ̂

n
This proves Theorem 2.

To prove Theorem 1 proceed as above with A == 1. We obtain a
factorization ratio a with In a\ = My^i. Pick f3 = a or a~1, whichever is
bigger than 1. Then

lgn-lg(lgTz)+l

Mn = f3 - 1 < e^ - 1 < e^Mn i < 108 (lgn

\ n ,

-+lge

This proves Theorem 1.

3. Lower bounds.

Proof of Theorem 3. — In [I], it was proved that for any polynomial
P with integer coefficients of degree 2 or more, the equation

P(x) = n\
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has only a density 0 set of solutions n. This implies in particular that for
any positive integer a the equation

(9) x(x + a) = n\

has only a density 0 set of solutions n. Hence, after omission of such a set
of TI'S, the minimal a for which (9) has a solution becomes arbitrarily large
as n grows. This proves the theorem.

Theorem 4 follows straightforwardly from

PROPOSITION 2. — If n > 4 is a perfect square then either hn-i —
ln-1 > V^ — 1 OF hn — In > V^'

Proof. — Let n = m2. Put :

a = hn-l - ln-1, b= hn- In-

Since n > 4 there exists a prime p G ( ———, n — 1 . For such p we have

p\(n — 1)! but p2 \ (n — 1)!. In particular, (n — 1)! is not a square, so a > 1.
Now

4^n + b) = 4n! = 477^(71 - 1)! = 4771^^-1(^-1 + a).

This yields :

b2 - m2a2 = (2ln + b - m{2ln-i 4- a)){2ln + 6 + m(2^-i + a)).

If 2ln + b ̂  m(2ln-i + a) then

\b2 - m2a2\ > 2ln + b + m(2^-i + a)

_ ^hn+ln hn-l + ln-1-2 ^ +2m ^

> 2^/hnln + 2m^/hn-lln-l

=^\fn\.

Hence in this case either b > 2(7i!)1/4 > ^/n, or 7720 > 2(7i!)1/4 > ^fn,
so that a > \/n — 1. On the other hand, if 2ln -\- b = m(2ln-i + a) then
b2 —m^a2 = 0, and therefore 6 > Trza > m = ̂ /n. This completes the proof.
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