Let be a compact complex nonsingular surface without curves, and a holomorphic vector bundle of rank 2 on . It turns out that the associated projective bundle has no divisors if and only if is “strongly” irreducible. Using the results concerning irreducible bundles of [Banica-Le Potier, J. Crelle, 378 (1987), 1-31] and [Elencwajg- Forster, Annales Inst. Fourier, 32-4 (1982), 25-51] we give a proof of existence for bundles which are strongly irreducible.
Soit une surface -analytique, compacte, lisse, sans diviseurs, et un fibré vectoriel holomorphe de rang 2 sur . Le fibré projectif associé, , n’aura pas de diviseurs si et seulement si est “fortement” irréductible. On prouve l’existence de tels fibrés.
@article{AIF_1989__39_1_239_0,
author = {Toma, Matei},
title = {A class of non-algebraic threefolds},
journal = {Annales de l'Institut Fourier},
pages = {239--250},
year = {1989},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {39},
number = {1},
doi = {10.5802/aif.1166},
mrnumber = {90k:32084},
zbl = {0659.32024},
language = {en},
url = {https://www.numdam.org/articles/10.5802/aif.1166/}
}
Toma, Matei. A class of non-algebraic threefolds. Annales de l'Institut Fourier, Tome 39 (1989) no. 1, pp. 239-250. doi: 10.5802/aif.1166
[1] & , Sur l'existence des fibrés vectoriels holomorphes sur les surfaces non-algébriques, J. reine angew. Math., 378 (1987), 1-31. | Zbl | MR
[2] , & , Compact complex surfaces, Berlin-Heidelberg-New York, 1984. | Zbl | MR
[3] & , Vector bundles on manifolds without divisors and a theorem on deformations, Ann. Inst. Fourier, 32-4 (1982), 25-51. | Zbl | MR | Numdam
[4] , Complex Analytic Geometry, LNM 538, Berlin-Heidelberg-New York, 1976. | Zbl | MR
[5] & , Coherent analytic sheaves, Berlin-Heidelberg-New-York, 1984. | Zbl | MR
[6] , Abelian varieties, Oxford Univ. Press, 1970. | Zbl | MR
Cité par Sources :





