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A CLASS OF NON-ALGEBRAIC THREEFOLDS

by Matei TOMA

Introduction.

Let X be a non-algebraic compact complex surface. A holomorphic
vector bundle E on X is called irreducible if it does not admit coherent
subsheaves F with 0 < rankF < rankE . In contrast with the algebraic
case there exist such bundles on some non-algebraic surfaces. This phe-
nomenon was brought forward by G. Elencwajg and 0. Forster in [3] and
further studied by C. Banica and J. Le Potier in [1].

One may expect that the projective bundle P(E) also has strongly
non-algebraic features. Assume X has no curves and rankJS = 2 . Then
P(E) is a threefold whose only curves are the vertical lines of the fibering
P(£') -> X . But when does P(E) have no surface? It turns out that this
happens if and only if the bundle E remains irreducible after any base
change X' —> X , where X' is again a compact complex surface and / a
surjective map. We call these bundles strongly irreducible.

Combining the methods of [1] and [3], we prove in this paper the
existence of strongly irreducible bundles on any 2-dimensional torus with-
out curves and on any J<T3-surface without curves (see the theorem for
the exact statement). Using these bundles one obtains as above families of
analytic threefolds without divisors. Their Chern numbers depend on the
invariants of the surface X and on the Chern numbers of the bundles E .

Key-words : Compact complex surface - Holomorphic vector bundle - Nonalgebraic
surface - Complex threefold.
A.M.S. Classification : 32J15, 32L99.
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In this way we specify a region in the "geography" of analytic threefolds.
The only other compact complex surfaces without curves besides tori and
A'3-surfaces are of class VII (Inoue surfaces, for example) but we have not
been able to find examples of strongly irreducible bundles in this case.

I express my gratitude to C. Banica for suggesting the problem to
me and for the useful discussions about it.

1. Strongly irreducible vector bundles.

A holomorphic vector bundle E of rank r on a complex manifold X is
called irreducible if it does not admit coherent subsheaves of rank r' with
0 < r1 < r .

If E has rank 2 , then this is equivalent to h°(E 0 L) = 0 , for every
L in Pic(X) , [3].

IfrankE = 3 , irreducibility amounts to h°(E^L) = A°(E*(8)L) = 0 ,
for every L in Pic(X) .

DEFINITION. — We call E strongly irreducible if for every "base
change" X' —> X , meaning by this a proper holomorphic surjective map
between complex manifolds of the same dimension, f*E is irreducible.

From now on X , X1 will always denote connected, non-singular,
compact, complex surfaces while E will be a holomorphic vector bundle of
rank 2 on X .

LEMMA 1. — Let X' —> X , be a bimeromorphic mapping. Then
E is irreducible (resp. strongly irreducible) on X if and only if f*E is
irreducible (resp. strongly irreducible) on X' .

Proof. — If L ̂  E for L in Pic(X) , then /*£ -> f*E is injective on
a Zariski open set hence the image of this morphism is a coherent subsheaf
of rank 1 in f*E .

Conversely, let L ̂  f*E , with L in Pic(-X'') . Applying /* we get an
injection AL ̂ f.rE,
where rank/*L = 1 . The natural morphism

E ̂  f^E
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is an isomorphism on a Zariski open set so the inverse image of /*£ through
it is a coherent subsheaf of rank 1 in E .

Coming now to the strong irreducibility, let X" -9-^ X be a base
change with g*E reducible and Y —^ X" x ^ X ' a resolution of singularities.
In the commutative diagram

y^

T is bimeromorphic, hence r*g*E = a*f*E is reducible, and so f*E is not
strongly irreducible. The converse is obvious.

Consequently, the bimeromorphic mappings do not 'change the irre-
ducibility of bundles. The following example shows that not every base
change has this property.

Example. — Let X' be a 2-dimensional complex torus with a(X') =
0 and N S ( X ' ) ̂  0 (NS denotes the Neron-Severi group), r a translation
on X' with r2 = idx/ , G = {id, r} , X = X ' / G , H : C2 x C2 -^ C2 a her-
mitian form with Imff(r' x F) C Z and Imff(r x F) (/L Z , where T and F'
are the lattices in C2 which give X* and X , respectively. (For example, one
can choose T' generated by the vectors (1,0), (0,1), z(l, v^), i(-V2,1), F by
(1,0), (0,1), z(l/2, V^/2), i(-V2,1) and

ff= ( -i o ) ) see ^3; -^PP611^])'

By the theorem of Appel-Humbert (cf. [6]) there is a line bundle
L' = L'{H^o) on X1 such that ci(L') corresponds to H (we use the
notations of loc. cit.). I! is not in /*(Pic(X)) by the choice of H .

If there existed an isomorphism

e : r*L' -^ L' ,

then multiplying it with a suitable constant we should have T*(e) o e = 1 ,
hence L' would be invariant to the action of G , which contradicts the fa<;t
that L' is not in /*(Pic(X)) . Consequently r*!/ ^ L' .

Let's consider E' = V © r*Z/ and the natural isomorphism r^E1 —^
E' . It follows that E is invariant to the action of G and so there is a
holomorphic vector bundle E on X of rank 2 such that E' = f*E . E'
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being reducible, by construction, E cannot be strongly irreducible. But E
is irreducible. Indeed, if L ̂  E were an injective morphism of coherent
sheaves we would get

r L ^ r E = L t @ r ^ L t .
Composing with the projections it would follow that one of the

morphisms f*L —> L' or f*L —^ r*Z/ would be nonzero. This would be
an isomorphism ([3], § 2.1) because a(X/) = 0 and so X1 has no curves
(being a torus). This would contradict the choice of L' .

The compact complex threefolds we study are projective bundles
P(E) associated to holomorphic vector bundles E of rank 2 on X . We
denote by TT : P(E) —> X the natural projection and by OP(£;)(-I) the
tautological line subbundle in 7r*jE5 . In the sequel we use the standard
notation Op(£?)(n) , n € Z , for its tensor powers. One has the following
exact sequence on P(E) :

(1) 0 -^ OP(E) -^ ^E (g) O?(E)W -^ TP(E) -* ̂ Tx -* 0

where the first morphism is induced by the inclusion C?P(£)(—I) <—^ ̂ E .
One also has Pic(P(£')) ^ Pic(X) © Z , any invertible sheaf on P(E) being
of the form TT*L 0 Op(f?)(n) for some L in Pic(X) and n in Z . For n > 0
and f € Coh(X) the following isomorphisms are well known

^Op^Tl)^,?71^*

7r.(7r*^0 Qp(E)(n)) ̂ ^05^*

where SnE are the symmetric powers of E .

DEFINITION. — A horizontal divisor ofP(E) is an effective divisor
in P(E) such that the restriction ofpr to its support covers X .

PROPOSITION. — For a nonsingular compact complex surface X
and a holomorphic vector bundle E of rank 2onX the following statements
are equivalent :

1) E is strongly irreducible.

2) P(E) does not admit horizontal divisors.

3) h°(L 0 S^'E) =0 for all L in Pic(X) and all positive integers n .

In the proof we shall use the
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LEMMA 2. — E is reducible if and only ifP(E) admits a divisor
whose projection on X is bimeromorphic.

Proof. — Let D be an irreducible divisor as above and v : D —»• D a
resolution of singularities. One has the diagram

D -^ D ^ P(E)
P=^D \ [ 7T

X

Having OP(£;)(—I) c-^ ̂ E and applying {i o i/)* we get an injective
bundle morphism on D

(i o ̂ )*0p(£7)(-l) ̂  (i o i/)* o 7r*£

hence (p o y / ) * E = (?r o i o i/)*E is reducible and so E must be reducible
according to lemma 1.

Conversely, if E is reducible there is an element L of PicX and a
nonzero section Ox c-^ E 0 L~1 , having Z as zero divisor. Then

0 ^E^L-^O^Z)
is a section which vanishes on a finite or empty set A C X . On X \ A ,
L 0 0(Z) is a line subbundle of E , hence it induces a section

X\A-.P(E)\^\A).
The closure in P(E) of the image of this section is an analytic set (cf. [5],
Prop. 10.6.3) which defines a horizontal divisor whose projection on X , is
bimeromorphic.

Proof of the Proposition, — "1 => 2" Suppose D is a horizontal
divisor of P(E) . Then as in the proof of lemma 2 one gets that (p o i/)*25
is reducible hence E cannot be strongly irreducible.

"2 ==>- 1" Suppose now there is a base change Xf ——> X such that
f*E is reducible. One has the commutative diagram

P ( E ) x x X f ^ P(f"E) -^ P(E)
^ I I ^

X1 -^ X
where / is induced by the projection. By lemma 2 there is a horizontal
divisor D' in P(f*E) . Since / o 7r'(23') = X it follows by commutativity,
that ^\f(D') : f{^) —> X is surjective hence f(D') is a horizontal divisor
of P(E) .
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"1 ̂  3" E is not strongly irreducible <=^ E* is not strongly irreducible
^ P(2?*) admits horizontal divisors.

For a horizontal divisor D in P(JS*)
0(^)^7rU00p(£7.)(n)

with L in Pic(X) and n > 0 . On the other side
ff°(P(£*),7rU00p(^)(n)) ̂
ff°(X,7r,(7r*£ 0 Op(^)(n))) ̂  ff°(X,L 0 5^**) ̂  ff°(X,L 0 5^)

and the wanted equivalence follows.

.Remark. — E strongly irreducible =^ S2E strongly irreducible.

Proof. — Since ^(S^E) ̂  S2(f!'E) it will be enough to prove that
the strongly irreducibility of E implies the irreducibility of S^E . For this we
have to show that ^(S^E^L) = ^((S^EY 0£) = 0 for all £ in Pic(X) .
But (S^E)* ^ S2^*) and the conclusion follows using the Proposition for
both E and E* .

2. On the existence of strongly irreducible bundles.

According to the proposition the existence of compact analytic three-
folds of type P(E) without divisors is ensured if and only if the base X
has no curves and E is strongly irreducible. The following theorem gives
an answer to the problem of existence of such bundles. We first recall some
notations from [1].

Let X be a non-algebraic compact complex surface. For every pair
of cohomology classes (01,02) , ci € ^(X.Z) , 02 € H^^X^Z) ^ Z one
defines the rational number

A(ci,C2)=^(c2-^j .

If -E is a holomorphic vector bundle of rank 2 with Chern classes
d(E) = Ci , then A is the discriminant of the bundle. For fi € NS(X) 0 Q
one defines ([I], p.21)

^)=-Jsup(/i-0, ^CNS(X).

If p. is of the form rj/2 with T} in NS(X), s(p) will coincide with the number
m(2, rj) defined in loc. cit. p. 7. Note that if T] = 0 (in fact if 77 € 2NS(X))
then s(rf/2) = 0 .
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THEOREM. — Let X be a KS-surface without divisors or a 2-
dimensional torus without divisors. Then there exist strongly irreducible
holomorphic vector bundles of rank 2 on X . More precisely :

- on KS-surfaces without curves every irreducible 2-bundle is
strongly irreducible and for every pair (ci, 02) € NS(X) x Z verifying

A(ci,C2) > max(5(ci/2),2 - 5(ci/2))
there exist such bundles E with Ci(E) = c» ,

- on tori without curves there exist strongly irreducible bundles E
with Chern classes (01,02) e NS(X) x Z as soon as

A(ci,C2) > sup(5(ci/2), 1 - 5(ci/2)) .

Proof. — Any base change X9 -^ X has a factorization X' -9-^
^ —^ ^ where X is normal, g has connected fibers and h is finite. Since
the branch locus of A on X is purely 1-codimensional ([4], p. 170), ifX has
no curves it follows that ft is a finite unramified covering, X nonsingular
and g bimeromorphic. By lemma 1 we can restrict ourselves to the study
of base changes which are finite unramified coverings. When X is K3 ,
hence simply connected, these are trivial and the statement of the theorem
follows (for the existence see [I], § 5.10).

Let now X be a 2-torus without curves with X = C2/? , r a lattice
in C2 , C2 -» X the universal covering. Every finite unramified covering
f '' X' —^ X is obtained from the universal covering factorizing through
a sublattice F C r , where X' ^ C2/r' . Hence X' is a complex torus
without curves. The condition A > s(ci/2) ensures the existence of an
extension on X

0 —^ I/i —^ E —^ 1/2 <8) Iz —> 0
where Li,I/2 € Pic(X) , Z is a 2-codimensional subspace in X and E
locally free sheaf of rank 2 having Chern classes ci,C2 (see [I], th. 2.3).
(The extension is also called a "devissage" of E).

We want f*E to be simple (i.e. End(/*E) ̂  C) for any base change
f '' X' —^ X as above. Since X' has no curves this happens if and only if
in the extension
(2) 0 —. /*Li —> rE ̂  /*L2 0 If.z —^ 0
one has /*Li ^ f*L^ (see [3], th. 2.2). It is necessary, therefore, to have
for every sublattice F' C F :

r{L^^L^)^Ox'
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where / : X' —> X is the associated covering. If this doesn't happen we
modify firstly L\ by tensorizing it with a suitable bundle LQ in PicX .
There exists such an LQ because we can choose, for example L^1 (g)I/i 0Lo €
Pic° X ^ Hom(r, {z € C | \z\ = 1}) to correspond to an injective morphism
a : r —>• {z € C | \z\ = 1} (it will remain injective hence nonzero on
any sublattice), cf. [6], th. Appell-Humbert. Then we remark that after
modifying Z/i as shown, ff2^,!^ 0 £1) ^ H°(X,L2 <8> L\) = 0 (£1 ^ £2
and we have no curves), and this ensures the existence of a new extension
with the required property.

The base (5,0) of the versal deformation £ ^ S x X , o f E = E o
(simple) will be smooth (see [3], § 3.6). Moreover, shrinking if necessary S
around 0 , we can assume that all the bundles Eg , s € S , are simple. It
follows by Serre duality

dim Ext2 (£'„,£„) = dimExt°(E^Es) = 1
for s € S , and by Riemann-Roch one gets dimExil(Es,Es) constant on
S , hence equal to dlmExil(EQ,Eo) . This entails that the deformation
£ —> S x X is versal in each s € S . Therefore the conditions for S required
in the proof of theorem 5.1. of [1] are fulfilled (without having to leave the
centre 0 € 5).

Let D(E) be the relative Douady space of 8 , D C D{8) the open
subset corresponding to the torsion-free quotients of rank 1 of Es , s € S ,
and TT : D —> S the projection. Let s € S , and E" in J9 quotient of Es
through a coherent subsheaf E' (E' will be a line bundle). One has the
following exact sequence

0 —> Hom(£', E") —> TE"D TE^ T,S ^ Exi\E', E")
where uj^. is the composition

T,S ^ Exi^E^E,)
^\ I

Exi^E^E")
and uj the Kodaira-Spencer morphism (see [I], § 5.5). Moreover, in the
chosen situation for S and A one shows that TE"^ isn't surjective for any
E" , fact which entails the existence of irreducible bundles on X (see [I],
§ 5.1).

We fix a covering / : X' —> X and consider the deformation
/*f —^ X' x S .

Since /*£?o is simple, we can choose a neighbourhood 5' of 0 in S , such
that f*Es are simple for s € 5" , S ' is Stein and H2^'^) = 0 . These
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conditions will be necessary later in order to apply a result of [3]. Let Df
be the open set corresponding to the torsion-free quotients of rank 1 in
the relative Douady space associated to the restriction of f*£ to S" and
TT^ : Df —» 6" the projection. We denote E' = Li , E" = £2 ̂  Iz and we
derive from (2), as above, an exact sequence

Tf.E-Df TrE'^ > ToS ^4 Ext1^',/*^) .

We shall show that Tf*E"^ isn't surjective or, equivalently, that uj^. ̂  0 .

Using the natural commutative diagram

ToS -^ ^(X^E^E) r-^ H1^', /*(£?* 0£?))
^\ 1 ^ i

ff1^, £J'* 0 E'1) -^ ^(X7, /*(£;'* 0 E11))
and the definitions through the double point (0, C[e]) , one easily gets

ujf = /* o uj and o;̂  = /* o a;_(_ .

Since ^4- ^ 0 it is enough to prove that

/* : H\X, £;'* 0 E") —^ H^X^ /*(jE?'* 0 £"))

is injective. Let T = £"* 0 E ' 1 . /* is obtained by composition in the
diagram

^(^^—^r

H^XJ^rF) ^ H^X'J^)

hence we must only show that the vertical arrow is injective. Since the
natural mapping T —> f^fT has a section tr : f^fF —> F there exists a
section at H1 -level too, hence the wanted injectivity.

Tf^E"^ not being surjective we deduce now that the morphism
Df ^—-> 5" is not surjective in the following way. Assuming its surjectivity
we would have f*Es reducible and indecomposable for all s in 5" . Then
there would exist L , M in Pic(X' x S ' ) , Y a 2-codimensional subspace
in X' x S ' , flat over 5" and an extension

(3) 0 —^ L —^ f*£ —^ M 0 Iy —^ 0

whose restriction to each fiber X' x {s} is the uniquely determined devissage
of Eg . This follows from [3], th. 2.3 (it seems to us that in order to have
the morphism q biholomorphic in loc. cit. one needs Pic° X to be compact,
which is the case in our situation). The sheaf M0Jy is S^-flat hence there
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exists an S^-morphism A : S" —> Df such that (3) is the pull-back of the
universal extension. In particular

(4) TT^ o A = ids' .

f*Es being indecomposable, they have at most one devissage (see [3], th.
2.2), hence TT-^ is injective (even bijective in the hypothesis we made) and
passing in (4) to the tangent morphism in 0 we get a contradiction.

Df -̂-> S ' not being surjective, there exist elements s in S such that
f*Es is irreducible. We want to show that the set Nf of elements of S
which do not have this property is a countable union of proper analytic
subsets of S . Let

Rf = {(^ 5) € Pic(X') x S | ff°(X7, P^ ® rE,) / 0}

where P^ is the fiber in $ of the Poincare bundle P of X' . By Grauert's
semi-continuity theorem, it follows that Rf is an analytic subset in
Pi^X') x S . Let p : Rf -^ S be the morphism induced by projection.
We have

Nf=p(Rf). .
Thus p isn't surjective, by the above facts.

Pic(X') is a countable union of connected components each isomor-
phic to Pic°(-Y') which in its turn is a 2-dimensional complex torus and
therefore compact. The restriction of p to each such compact is proper,
hence its image is a closed analytic set. It follows that Nf is a countable
union of proper closed analytic subsets of S .

This closes the proof of the theorem because making the union of all
Nf after all finite coverings / : X1 —> X (which form a countable set, up
to isomorphisms) we find that the complementary set consisting of those s
in S for which Eg is strongly irreducible is dense in 5" .

3. Some remarks.

1. The Chern numbers c^, CiCa, 03 of P(E) can be computed using (1)
and one finds :

4=2[ci(E^-ic2(E)+3ci(X)2]

ClC2=2[Cl(X)2+C2(X)]

C3 = 2C2(X) .
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We present the particular case c^(E) = 0 . The theorem provides
then strongly irreducible 2-bundles on tori without divisors if c^(E) ^ 2
and on 2<"3-surfaces without divisors if 03 (E) > 4 . For the corresponding
threefolds one has

X a torus
X K3

^
-8fc , k integer > 2
—Sk , k integer > 4

ClC2
0

48

C3
0

48

2. If £ is as in the theorem then ^^E) = 0 for all n > 0 . In
particular, for X a ^-surface with NS(X) = 0 , since Tx is irreducible,
hence strongly irreducible, we have

^{S^x) = 0 , for all n > 0 .

3. We couldn't obtain examples of strongly irreducible bundles on any
compact complex surface without curves. Indeed, the only case left, that of
the surfaces of class VII (cf. [2], p. 188), doesn't admit an analogous proof,
because here Pic° X ̂  C* isn't compact.

4. It is easy to get examples of strongly irreducible bundles on some
surfaces having divisors (for all surfaces whose minimal model is as in the
theorem, K3 or torus without curves, by lemma 1).

A torus X has no curves if and only if a(X) = 0 , but there exist
2^3-surfaces X having curves and a(X) = 0 . We didn't succeed in finding
examples of strongly irreducible bundles for this class of minimal models
too.
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