The Dirichlet problem for a singular elliptic equation
Annales de l'Institut Fourier, Volume 26 (1976) no. 1, p. 205-224

We study the solvability of the Dirichlet problem for a linear elliptic operator of the second order in which the coefficients of the first order derivatives become infinite on a portion of the boundary. The study makes use of Schauder’s estimates and suitably constructed barriers.

On étudie l’existence de solution du problème de Dirichlet pour un opérateur elliptique linéaire du second ordre dont les coefficients des dérivées du premier ordre deviennent infinis sur une partie de la frontière. On utilise les estimations de Schauder et des barrières convenablement construites.

@article{AIF_1976__26_1_205_0,
     author = {C\'ac, Nguyen Phuong},
     title = {The Dirichlet problem for a singular elliptic equation},
     journal = {Annales de l'Institut Fourier},
     publisher = {Imprimerie Louis-Jean},
     address = {Gap},
     volume = {26},
     number = {1},
     year = {1976},
     pages = {205-224},
     doi = {10.5802/aif.604},
     zbl = {0312.35028},
     mrnumber = {53 \#6088},
     language = {en},
     url = {http://www.numdam.org/item/AIF_1976__26_1_205_0}
}
Các, Nguyen Phuong. The Dirichlet problem for a singular elliptic equation. Annales de l'Institut Fourier, Volume 26 (1976) no. 1, pp. 205-224. doi : 10.5802/aif.604. http://www.numdam.org/item/AIF_1976__26_1_205_0/

[1] M.S. Baouendi, Sur une classe d'opérateurs elliptiques dégénérés, Bull. Soc. Math. France, 95 (1967), 45-87. | Numdam | MR 37 #4398 | Zbl 0179.19501

[2] P. Brousse and H. Poncin, Quelques résultats généraux concernant la détermination de solutions d'équations elliptiques par les conditions aux frontières, Jubilé Scientifique de M.P. Riabonchinsky, Publ. Sci. et techn. du Ministère de l'Air, Paris, 1954.

[3] A. Huber, Some results on generalized axially symmetric potentials, Proceedings of the Conference on Differential Equations, University of Maryland, 1955. | Zbl 0072.31406

[4] P. Jamet and S. V. Parter, Numerical methods for elliptic differential equations whose coefficients are singular on a portion of the boundary, Siam J. Numer. Anal., 4 (1967), 131-146. | MR 35 #6383 | Zbl 0161.35804

[5] J.J. Kohn and L. Nirenberg, Non coercive boundary value problems, Comm. Pure Appl. Math., 18 (1965), 443-492. | MR 31 #6041 | Zbl 0125.33302

[6] O.A. Ladyzhenskaya and N.N. Uraltseva, Linear and quasilinear and quasilinear elliptic equations, Translated from the Russian, Academic Press, New York 1968. | MR 39 #5941 | Zbl 0164.13002

[7] C.Y. Lo, Dirichlet problems for singular elliptic equations, Proc. Amer. Math. Soc., 39 (1973), 337-342. | MR 47 #5443 | Zbl 0264.35034

[8] C. Miranda, Partial Differential Equations of Elliptic Type, Springer-Verlag, New York 1970. | MR 44 #1924 | Zbl 0198.14101

[9] H. Morel, Introduction de poids dans l'étude des problèmes aux limites, Ann. Inst. Fourier, Grenoble, 12 (1962), 299-414. | Numdam | MR 29 #1558 | Zbl 0112.33903

[10] M.H. Protter and H.F. Weinberger, Maximum Principles in Differential Equations, Prentice Hall, Englewood Cliffs, New Jersey 1967. | MR 36 #2935 | Zbl 0153.13602

[11] M.K.V. Murthy and G. Stampacchia, Boundary value problems for some degenerate elliptic operators, Ann. Math. Pura Appl. 80 (1968), 1-122. | MR 40 #3069 | Zbl 0185.19201

[12] M. Schechter, On the Dirichlet problem for second order equations with coefficients singular at the boundary, Comm. Pure Appl. Math., 13 (1960), 321-328. | MR 22 #3872 | Zbl 0106.07703