Submanifolds of codimension two and homology equivalent manifolds
Annales de l'Institut Fourier, Volume 23 (1973) no. 2, p. 19-30

In this paper new methods of studying codimension two embeddings of manifolds are outlined. Results are stated on geometric periodicity of knot cobordism. The group of local knots of a manifold in a 2-plane bundle is introduced and computed, and applied to C o -close embeddings. General codimension two splitting theorems are discussed, with applications to equivariant knots and knot cobordism. A general existence theorem for P.L. (non-locally flat) embeddings is also given.

The methods involve some new functors in Hermitian K-theory, denoted Γ n (I). Some of the results are stated in terms of these functors and a “Kunneth formula” for Γ n (I×Z) is indicated.

Ce travail présente de nouvelles méthodes dans la théorie des plongements des variétés en codimension deux. On décrit des résultats sur la périodicité géométrique des groupes de cobordisme des nœuds. Les groupes des nœuds locaux d’une variété dans un espace fibré vectoriel de dimension deux sont introduits. Les calculs de ces groupes sont indiqués et appliqués aux plongements “C o -près”. On énonce des théorèmes généraux sur l’existence des sous-variétés caractéristiques en codimension deux, ainsi que leurs applications aux nœuds équivariants. On donne aussi un théorème général d’existence pour les plongements P.L. non localement plats.

Ces méthodes emploient de nouveaux foncteurs dans la K-théorie hermitienne, que nous appelons Γ n . Quelques-uns des résultats s’expriment en termes de ces foncteurs, qui satisfont d’ailleurs une “formule de Kunneth” pour Γ n (I×Z).

@article{AIF_1973__23_2_19_0,
     author = {Cappell, Sylvain E. and Shaneson, Julius L.},
     title = {Submanifolds of codimension two and homology equivalent manifolds},
     journal = {Annales de l'Institut Fourier},
     publisher = {Imprimerie Durand},
     address = {28 - Luisant},
     volume = {23},
     number = {2},
     year = {1973},
     pages = {19-30},
     doi = {10.5802/aif.454},
     zbl = {0279.57010},
     mrnumber = {49 \#11522},
     language = {en},
     url = {http://www.numdam.org/item/AIF_1973__23_2_19_0}
}
Cappell, Sylvain E.; Shaneson, Julius L. Submanifolds of codimension two and homology equivalent manifolds. Annales de l'Institut Fourier, Volume 23 (1973) no. 2, pp. 19-30. doi : 10.5802/aif.454. http://www.numdam.org/item/AIF_1973__23_2_19_0/

[1] W. Browder, Embedding smooth manifolds, In «Proceedings of the International Congress of Mathematicians (Moscow, 1966)», Mir, (1968), 712-719 (See also Bull. A.M.S., 72 (1966), 225-231 and 736). | Zbl 0141.40602

[2] W. Browder, Free Zp-actions on homotopy spheres, In «Topology of manifolds» (Proceedings of the 1969 Georgia Conference on Topology of Manifolds), Markham Press, Chicago (1970). | Zbl 0284.57030

[3] S. E. Cappell, Superspinning and knot complements, In «Topology of manifolds» (Proceedings of the 1969 Georgia Conference on Topology of Manifolds), Markham Press, Chicago (1970). | Zbl 0281.57001

[4] S. E. Cappell, A splitting theorem for manifolds and surgery groups, Bull. A.M.S., 77 (1971), 281-286. | MR 44 #2234 | Zbl 0215.52601

[5] S. E. Cappell, Lecture notes on the splitting theorem, Mimeo, notes Princeton University, 1972.

[6] S. E. Cappell and J. L. Shaneson, Submanifolds, group actions and knots I. Bull. A.M.S., to appear.

[7] S. E. Cappell and J. L. Shaneson, Submanifolds, group actions and knots II, Bull. A.M.S., to appear. | Zbl 0263.57013

[8] S. E. Cappell and J. L. Shaneson, Topological knots and cobordism, Topology, to appear. | Zbl 0268.57006

[9] S. E. Cappell and J. L. Shaneson, The placement problem in codimension two and homology equivalent manifolds, to appear. | Zbl 0279.57011

[10] S. E. Cappell and J. L. Shaneson, Non-Locally flat embeddings, Bull. A.M.S., to appear.

[11] F. T. Farrell and W. C. Hsiang, Manifolds with π1 = Gα × T, to appear (See also Bull. A.M.S., 74 (1968), 548-553).

[12] R. Fox and J. Milnor. Singularities of 2-spheres in 4-space, Bull. A.M.S., 63 (1965), 406. | Zbl 0146.45501

[13] M. A. Kervaire, Les nœuds de dimension supérieure, Bull. Soc. Math. de France, 93 (1965), 225-271. | Numdam | MR 32 #6479 | Zbl 0141.21201

[14] J. Levine, Knot cobordism in codimension two, Comm. Math. Helv., 44 (1968), 229-244. | MR 39 #7618 | Zbl 0176.22101

[15] J. Levine, Invariants of knot cobordism, Inventiones Math, 8 (1969), 98-110. | MR 40 #6563 | Zbl 0179.52401

[16] S. Lopez De Medrano, «Involutions on Manifolds», Springer-Verlag, (1971). | Zbl 0214.22501

[17] S. Lopez De Medrano, Invariant knots and surgery in codimension two, Actes du Congrès Int. des Mathématiciens Vol. 2. Gauthier-Villars, Paris, pp. 99-112. | MR 54 #8653 | Zbl 0231.57020

[18] J. L. Shaneson, Wall's Surgery obstruction groups for Z × G, Ann. of Math., 90 (1969), 296-334. | MR 39 #7614 | Zbl 0182.57303

[19] J. L. Shaneson, Surgery on 4-manifolds and topological transformation groups, In Procedings of the Amhearst Conference on Transformation groups (1970), to appear. | Zbl 0251.57014

[20] C. T. C. Wall, «Surgery on compact manifolds», Academic press, 1970. | Zbl 0219.57024

[21] L. Jones. Three characteristic classes measuring the obstruction to P.L. local unknottedness, Bull. A.M.S., to appear. | Zbl 0271.57005