Dans cet article, pour un processus standard et pour un , les conditions pour qu’une fonction -excessive nulle en un point soit nulle identiquement, sont étudiées.
In this article, for any Standard Process and for any , the conditions under which an -excessive function, vanishing at a point, vanishes identically are investigated.
@article{AIF_1972__22_2_165_0, author = {Ramaswamy, S.}, title = {Fine connectedness and alpha-excessive functions}, journal = {Annales de l'Institut Fourier}, pages = {165--168}, publisher = {Institut Fourier}, volume = {22}, number = {2}, year = {1972}, doi = {10.5802/aif.417}, zbl = {0232.60038}, mrnumber = {50 \#11475}, language = {en}, url = {www.numdam.org/item/AIF_1972__22_2_165_0/} }
Ramaswamy, S. Fine connectedness and alpha-excessive functions. Annales de l'Institut Fourier, Tome 22 (1972) no. 2, pp. 165-168. doi : 10.5802/aif.417. http://www.numdam.org/item/AIF_1972__22_2_165_0/
[1] Markov Processes and Potential Theory (Academic Press, 1968). | MR 41 #9348 | Zbl 0169.49204
AND ,[2] Processus de Markov, (Lecture Notes in Mathematics, n° 26 Springer-Verlag, 1967). | MR 36 #2219 | Zbl 0189.51403
,[3] Probability and Potentials (Blaisdell Publishing Company, 1966). | MR 34 #5119 | Zbl 0138.10401
,